--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-2 results: [] --- # segformer-b0-finetuned-segments-sidewalk-2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the eleninaneversmiles/wheels dataset. It achieves the following results on the evaluation set: - Loss: 0.1287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 2.9957 | 2.8571 | 20 | 3.4269 | | 2.6593 | 5.7143 | 40 | 2.3621 | | 1.9746 | 8.5714 | 60 | 1.2378 | | 1.5998 | 11.4286 | 80 | 1.2329 | | 1.3299 | 14.2857 | 100 | 0.8019 | | 1.3781 | 17.1429 | 120 | 0.8478 | | 2.1912 | 20.0 | 140 | 0.6386 | | 1.0362 | 22.8571 | 160 | 0.6467 | | 1.3817 | 25.7143 | 180 | 0.4496 | | 0.8108 | 28.5714 | 200 | 0.4032 | | 0.8187 | 31.4286 | 220 | 0.4650 | | 0.6671 | 34.2857 | 240 | 0.3251 | | 0.6062 | 37.1429 | 260 | 0.4035 | | 1.4152 | 40.0 | 280 | 0.3076 | | 1.3078 | 42.8571 | 300 | 0.2517 | | 0.4267 | 45.7143 | 320 | 0.2405 | | 0.5829 | 48.5714 | 340 | 0.2142 | | 0.8742 | 51.4286 | 360 | 0.2055 | | 0.3055 | 54.2857 | 380 | 0.2257 | | 0.5966 | 57.1429 | 400 | 0.1559 | | 0.5006 | 60.0 | 420 | 0.1927 | | 0.4433 | 62.8571 | 440 | 0.1525 | | 0.2377 | 65.7143 | 460 | 0.1597 | | 0.2612 | 68.5714 | 480 | 0.1703 | | 0.477 | 71.4286 | 500 | 0.1663 | | 0.2006 | 74.2857 | 520 | 0.1427 | | 0.2641 | 77.1429 | 540 | 0.1370 | | 0.5154 | 80.0 | 560 | 0.1386 | | 0.447 | 82.8571 | 580 | 0.1274 | | 0.195 | 85.7143 | 600 | 0.1236 | | 0.1643 | 88.5714 | 620 | 0.1420 | | 0.4199 | 91.4286 | 640 | 0.1226 | | 0.1644 | 94.2857 | 660 | 0.1419 | | 0.312 | 97.1429 | 680 | 0.1365 | | 0.3905 | 100.0 | 700 | 0.1181 | | 0.4035 | 102.8571 | 720 | 0.1305 | | 0.1411 | 105.7143 | 740 | 0.1262 | | 0.3018 | 108.5714 | 760 | 0.1322 | | 0.1332 | 111.4286 | 780 | 0.1317 | | 0.303 | 114.2857 | 800 | 0.1205 | | 0.2399 | 117.1429 | 820 | 0.1358 | | 0.2488 | 120.0 | 840 | 0.1226 | | 0.304 | 122.8571 | 860 | 0.1275 | | 0.2278 | 125.7143 | 880 | 0.1280 | | 0.2718 | 128.5714 | 900 | 0.1294 | | 0.5304 | 131.4286 | 920 | 0.1320 | | 0.1143 | 134.2857 | 940 | 0.1279 | | 0.1075 | 137.1429 | 960 | 0.1258 | | 0.2103 | 140.0 | 980 | 0.1349 | | 0.1483 | 142.8571 | 1000 | 0.1230 | | 0.287 | 145.7143 | 1020 | 0.1253 | | 0.3606 | 148.5714 | 1040 | 0.1287 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cpu - Datasets 2.19.2 - Tokenizers 0.19.1