File size: 2,075 Bytes
b65f5c0
fa30ff1
 
 
b65f5c0
fa30ff1
b65f5c0
fa30ff1
 
 
 
 
 
 
b65f5c0
 
fa30ff1
 
 
 
b65f5c0
fa30ff1
 
 
 
 
 
 
b65f5c0
 
 
fa30ff1
 
 
 
 
b65f5c0
 
 
fa30ff1
b65f5c0
 
 
fa30ff1
5008839
fa30ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65f5c0
 
fa30ff1
b65f5c0
fa30ff1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: modern-bert-finetuned-query-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# modern-bert-finetuned-query-classification

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1256
- Accuracy: 0.9759
- F1: 0.9759
- Precision: 0.9763
- Recall: 0.9759

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 315  | 0.1474          | 0.9648   | 0.9647 | 0.9649    | 0.9648 |
| 0.1965        | 2.0   | 630  | 0.1226          | 0.9704   | 0.9704 | 0.9718    | 0.9704 |
| 0.1965        | 3.0   | 945  | 0.1192          | 0.9741   | 0.9742 | 0.9757    | 0.9741 |
| 0.0426        | 4.0   | 1260 | 0.1250          | 0.9741   | 0.9741 | 0.9742    | 0.9741 |
| 0.0042        | 5.0   | 1575 | 0.1256          | 0.9759   | 0.9759 | 0.9763    | 0.9759 |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1