elihoole commited on
Commit
60e7aba
·
verified ·
1 Parent(s): 54757e9

Add detailed model card

Browse files
Files changed (1) hide show
  1. README.md +26 -53
README.md CHANGED
@@ -1,72 +1,45 @@
 
1
  ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: answerdotai/ModernBERT-base
 
5
  tags:
6
- - v4.0
7
- - generated_from_trainer
 
8
  metrics:
9
- - accuracy
10
- - f1
11
- - precision
12
- - recall
13
- model-index:
14
- - name: modern-bert-finetuned-query-classification
15
- results: []
16
  ---
17
 
18
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
19
- should probably proofread and complete it, then remove this comment. -->
20
-
21
- # modern-bert-finetuned-query-classification
22
 
23
- This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
24
- It achieves the following results on the evaluation set:
25
- - Loss: 0.1555
26
- - Accuracy: 0.9789
27
- - F1: 0.9790
28
- - Precision: 0.9792
29
- - Recall: 0.9789
30
 
31
  ## Model description
32
 
33
- More information needed
34
-
35
- ## Intended uses & limitations
36
-
37
- More information needed
38
 
39
  ## Training and evaluation data
40
 
41
- More information needed
42
 
43
  ## Training procedure
44
 
45
- ### Training hyperparameters
46
-
47
- The following hyperparameters were used during training:
48
- - learning_rate: 2e-05
49
- - train_batch_size: 8
50
- - eval_batch_size: 8
51
- - seed: 42
52
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
53
- - lr_scheduler_type: linear
54
- - num_epochs: 5
55
 
56
- ### Training results
57
-
58
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
- | No log | 1.0 | 305 | 0.2230 | 0.9579 | 0.9579 | 0.9600 | 0.9579 |
61
- | 0.1385 | 2.0 | 610 | 0.1555 | 0.9789 | 0.9790 | 0.9792 | 0.9789 |
62
- | 0.1385 | 3.0 | 915 | 0.1744 | 0.9693 | 0.9694 | 0.9701 | 0.9693 |
63
- | 0.0189 | 4.0 | 1220 | 0.2378 | 0.9674 | 0.9675 | 0.9684 | 0.9674 |
64
- | 0.0022 | 5.0 | 1525 | 0.2181 | 0.9732 | 0.9733 | 0.9737 | 0.9732 |
65
 
 
 
 
66
 
67
- ### Framework versions
68
 
69
- - Transformers 4.50.3
70
- - Pytorch 2.6.0+cu124
71
- - Datasets 3.5.0
72
- - Tokenizers 0.21.1
 
1
+
2
  ---
3
+ language: en
4
+ license: mit
5
+ datasets:
6
+ - your_dataset_name
7
  tags:
8
+ - text-classification
9
+ - bert
10
+ - query-classification
11
  metrics:
12
+ - accuracy: 0.9789272030651341
13
+ - f1: 0.9789776553861008
 
 
 
 
 
14
  ---
15
 
16
+ # BERT Fine-tuned for Query Classification
 
 
 
17
 
18
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/answerdotai/ModernBERT-base) on a query classification dataset.
 
 
 
 
 
 
19
 
20
  ## Model description
21
 
22
+ The model was fine-tuned on queries to classify them into specific categories.
 
 
 
 
23
 
24
  ## Training and evaluation data
25
 
26
+ The model was trained on [describe your dataset here].
27
 
28
  ## Training procedure
29
 
30
+ The model was trained with the following hyperparameters:
31
+ - Learning rate: 2e-05
32
+ - Batch size: 8
33
+ - Number of epochs: 5
34
+ - Optimizer: AdamW
35
+ - Weight decay: 0.01
 
 
 
 
36
 
37
+ ## Evaluation results
 
 
 
 
 
 
 
 
38
 
39
+ The model achieved the following results on the validation set:
40
+ - Accuracy: 0.9789
41
+ - F1 Score: 0.9790
42
 
43
+ ## Uses and limitations
44
 
45
+ [Discuss the intended uses and limitations of your model]