Add detailed model card
Browse files
README.md
CHANGED
@@ -1,72 +1,45 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
license:
|
4 |
-
|
|
|
5 |
tags:
|
6 |
-
-
|
7 |
-
-
|
|
|
8 |
metrics:
|
9 |
-
- accuracy
|
10 |
-
- f1
|
11 |
-
- precision
|
12 |
-
- recall
|
13 |
-
model-index:
|
14 |
-
- name: modern-bert-finetuned-query-classification
|
15 |
-
results: []
|
16 |
---
|
17 |
|
18 |
-
|
19 |
-
should probably proofread and complete it, then remove this comment. -->
|
20 |
-
|
21 |
-
# modern-bert-finetuned-query-classification
|
22 |
|
23 |
-
This model is a fine-tuned version of [
|
24 |
-
It achieves the following results on the evaluation set:
|
25 |
-
- Loss: 0.1555
|
26 |
-
- Accuracy: 0.9789
|
27 |
-
- F1: 0.9790
|
28 |
-
- Precision: 0.9792
|
29 |
-
- Recall: 0.9789
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
## Intended uses & limitations
|
36 |
-
|
37 |
-
More information needed
|
38 |
|
39 |
## Training and evaluation data
|
40 |
|
41 |
-
|
42 |
|
43 |
## Training procedure
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
- seed: 42
|
52 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
53 |
-
- lr_scheduler_type: linear
|
54 |
-
- num_epochs: 5
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
59 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
60 |
-
| No log | 1.0 | 305 | 0.2230 | 0.9579 | 0.9579 | 0.9600 | 0.9579 |
|
61 |
-
| 0.1385 | 2.0 | 610 | 0.1555 | 0.9789 | 0.9790 | 0.9792 | 0.9789 |
|
62 |
-
| 0.1385 | 3.0 | 915 | 0.1744 | 0.9693 | 0.9694 | 0.9701 | 0.9693 |
|
63 |
-
| 0.0189 | 4.0 | 1220 | 0.2378 | 0.9674 | 0.9675 | 0.9684 | 0.9674 |
|
64 |
-
| 0.0022 | 5.0 | 1525 | 0.2181 | 0.9732 | 0.9733 | 0.9737 | 0.9732 |
|
65 |
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
- Pytorch 2.6.0+cu124
|
71 |
-
- Datasets 3.5.0
|
72 |
-
- Tokenizers 0.21.1
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language: en
|
4 |
+
license: mit
|
5 |
+
datasets:
|
6 |
+
- your_dataset_name
|
7 |
tags:
|
8 |
+
- text-classification
|
9 |
+
- bert
|
10 |
+
- query-classification
|
11 |
metrics:
|
12 |
+
- accuracy: 0.9789272030651341
|
13 |
+
- f1: 0.9789776553861008
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
+
# BERT Fine-tuned for Query Classification
|
|
|
|
|
|
|
17 |
|
18 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/answerdotai/ModernBERT-base) on a query classification dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
The model was fine-tuned on queries to classify them into specific categories.
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Training and evaluation data
|
25 |
|
26 |
+
The model was trained on [describe your dataset here].
|
27 |
|
28 |
## Training procedure
|
29 |
|
30 |
+
The model was trained with the following hyperparameters:
|
31 |
+
- Learning rate: 2e-05
|
32 |
+
- Batch size: 8
|
33 |
+
- Number of epochs: 5
|
34 |
+
- Optimizer: AdamW
|
35 |
+
- Weight decay: 0.01
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
## Evaluation results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
The model achieved the following results on the validation set:
|
40 |
+
- Accuracy: 0.9789
|
41 |
+
- F1 Score: 0.9790
|
42 |
|
43 |
+
## Uses and limitations
|
44 |
|
45 |
+
[Discuss the intended uses and limitations of your model]
|
|
|
|
|
|