--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: modern-bert-finetuned-query-classification results: [] --- # modern-bert-finetuned-query-classification This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1256 - Accuracy: 0.9759 - F1: 0.9759 - Precision: 0.9763 - Recall: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 315 | 0.1474 | 0.9648 | 0.9647 | 0.9649 | 0.9648 | | 0.1965 | 2.0 | 630 | 0.1226 | 0.9704 | 0.9704 | 0.9718 | 0.9704 | | 0.1965 | 3.0 | 945 | 0.1192 | 0.9741 | 0.9742 | 0.9757 | 0.9741 | | 0.0426 | 4.0 | 1260 | 0.1250 | 0.9741 | 0.9741 | 0.9742 | 0.9741 | | 0.0042 | 5.0 | 1575 | 0.1256 | 0.9759 | 0.9759 | 0.9763 | 0.9759 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1