elnasharomar2's picture
Update README.md
2583e34
metadata
base_model: elnasharomar2/AraBert_arabic_keyword_extraction
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: AraBert_arabic_keyword_extraction
    results: []

AraBert_arabic_keyword_extraction

This model is a fine-tuned version of aubmindlab/bert-base-arabertv2n) on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4622
  • Precision: 0.5583
  • Recall: 0.6294
  • F1: 0.5917
  • Accuracy: 0.9297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2524 1.0 750 0.1969 0.3638 0.4022 0.3820 0.9161
0.1705 2.0 1500 0.1793 0.4424 0.4749 0.4581 0.9240
0.1386 3.0 2250 0.1834 0.4547 0.5438 0.4953 0.9240
0.1091 4.0 3000 0.1987 0.4805 0.5650 0.5193 0.9243
0.0892 5.0 3750 0.2164 0.4951 0.5661 0.5282 0.9259
0.0737 6.0 4500 0.2130 0.5101 0.5635 0.5355 0.9282
0.0579 7.0 5250 0.2301 0.4890 0.5810 0.5311 0.9266
0.0481 8.0 6000 0.2479 0.5025 0.6041 0.5486 0.9269
0.0411 9.0 6750 0.2496 0.5353 0.5739 0.5539 0.9298
0.0348 10.0 7500 0.2719 0.5150 0.6063 0.5570 0.9286
0.0304 11.0 8250 0.2881 0.5252 0.6015 0.5608 0.9283
0.0258 12.0 9000 0.3088 0.5129 0.6093 0.5569 0.9266
0.0231 13.0 9750 0.3110 0.5230 0.5922 0.5555 0.9284
0.0199 14.0 10500 0.3196 0.5243 0.6030 0.5609 0.9282
0.0188 15.0 11250 0.3194 0.5169 0.6041 0.5571 0.9279
0.0146 16.0 750 0.3524 0.5119 0.5993 0.5522 0.9237
0.011 17.0 1500 0.3849 0.4895 0.6410 0.5551 0.9214
0.0087 18.0 2250 0.3469 0.5353 0.6153 0.5725 0.9311
0.0113 19.0 3000 0.3471 0.5150 0.6212 0.5631 0.9268
0.0088 20.0 3750 0.3677 0.5493 0.5929 0.5703 0.9302
0.0068 21.0 4500 0.3867 0.5313 0.6071 0.5667 0.9270
0.0056 22.0 5250 0.3843 0.5435 0.6186 0.5786 0.9293
0.0049 23.0 6000 0.4145 0.5491 0.6272 0.5855 0.9295
0.0043 24.0 6750 0.4290 0.5396 0.6339 0.5830 0.9280
0.0035 25.0 7500 0.4532 0.5322 0.6369 0.5799 0.9274
0.0033 26.0 8250 0.4273 0.5570 0.6227 0.5880 0.9309
0.0032 27.0 9000 0.4415 0.5541 0.6317 0.5903 0.9297
0.0025 28.0 9750 0.4509 0.5518 0.6272 0.5871 0.9291
0.0021 29.0 10500 0.4652 0.5668 0.6179 0.5912 0.9308
0.0026 30.0 11250 0.4622 0.5583 0.6294 0.5917 0.9297

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0