File size: 2,803 Bytes
5be8e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: distilbert-base-uncased_fold_1_ternary
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_fold_1_ternary

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0582
- F1: 0.7326

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 290  | 0.5524          | 0.6755 |
| 0.5648        | 2.0   | 580  | 0.5654          | 0.7124 |
| 0.5648        | 3.0   | 870  | 0.6547          | 0.6896 |
| 0.2712        | 4.0   | 1160 | 0.8916          | 0.7263 |
| 0.2712        | 5.0   | 1450 | 1.1187          | 0.7120 |
| 0.1147        | 6.0   | 1740 | 1.2778          | 0.7114 |
| 0.0476        | 7.0   | 2030 | 1.4441          | 0.7151 |
| 0.0476        | 8.0   | 2320 | 1.5535          | 0.7133 |
| 0.0187        | 9.0   | 2610 | 1.6439          | 0.7212 |
| 0.0187        | 10.0  | 2900 | 1.7261          | 0.7313 |
| 0.0138        | 11.0  | 3190 | 1.6806          | 0.7292 |
| 0.0138        | 12.0  | 3480 | 1.8425          | 0.7111 |
| 0.009         | 13.0  | 3770 | 1.9207          | 0.7213 |
| 0.0045        | 14.0  | 4060 | 1.8900          | 0.7202 |
| 0.0045        | 15.0  | 4350 | 1.9730          | 0.7216 |
| 0.0042        | 16.0  | 4640 | 2.0775          | 0.7041 |
| 0.0042        | 17.0  | 4930 | 2.0514          | 0.7106 |
| 0.0019        | 18.0  | 5220 | 2.0582          | 0.7326 |
| 0.0039        | 19.0  | 5510 | 2.1010          | 0.7081 |
| 0.0039        | 20.0  | 5800 | 2.0487          | 0.7273 |
| 0.0025        | 21.0  | 6090 | 2.0415          | 0.7254 |
| 0.0025        | 22.0  | 6380 | 2.0753          | 0.7157 |
| 0.0017        | 23.0  | 6670 | 2.0554          | 0.7246 |
| 0.0017        | 24.0  | 6960 | 2.0644          | 0.7290 |
| 0.0001        | 25.0  | 7250 | 2.0711          | 0.7310 |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1