--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_5_binary results: [] --- # distilbert-base-uncased_fold_5_binary This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5093 - F1: 0.7801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4760 | 0.7315 | | 0.3992 | 2.0 | 576 | 0.4428 | 0.7785 | | 0.3992 | 3.0 | 864 | 0.5093 | 0.7801 | | 0.2021 | 4.0 | 1152 | 0.6588 | 0.7634 | | 0.2021 | 5.0 | 1440 | 0.9174 | 0.7713 | | 0.0945 | 6.0 | 1728 | 0.9832 | 0.7726 | | 0.0321 | 7.0 | 2016 | 1.2103 | 0.7672 | | 0.0321 | 8.0 | 2304 | 1.3759 | 0.7616 | | 0.0134 | 9.0 | 2592 | 1.4405 | 0.7570 | | 0.0134 | 10.0 | 2880 | 1.4591 | 0.7710 | | 0.0117 | 11.0 | 3168 | 1.4947 | 0.7713 | | 0.0117 | 12.0 | 3456 | 1.6224 | 0.7419 | | 0.0081 | 13.0 | 3744 | 1.6462 | 0.7520 | | 0.0083 | 14.0 | 4032 | 1.6880 | 0.7637 | | 0.0083 | 15.0 | 4320 | 1.7080 | 0.7380 | | 0.0048 | 16.0 | 4608 | 1.7352 | 0.7551 | | 0.0048 | 17.0 | 4896 | 1.6761 | 0.7713 | | 0.0024 | 18.0 | 5184 | 1.7553 | 0.76 | | 0.0024 | 19.0 | 5472 | 1.7312 | 0.7673 | | 0.005 | 20.0 | 5760 | 1.7334 | 0.7713 | | 0.0032 | 21.0 | 6048 | 1.7963 | 0.7578 | | 0.0032 | 22.0 | 6336 | 1.7529 | 0.7679 | | 0.0025 | 23.0 | 6624 | 1.7741 | 0.7662 | | 0.0025 | 24.0 | 6912 | 1.7515 | 0.7679 | | 0.0004 | 25.0 | 7200 | 1.7370 | 0.7765 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1