emendes3 commited on
Commit
60e42f5
·
verified ·
1 Parent(s): 8059762

Model save

Browse files
README.md CHANGED
@@ -1,27 +1,19 @@
1
  ---
2
  library_name: peft
3
  tags:
4
- - liuhaotian/llava-v1.5-13b_10.0
5
  - generated_from_trainer
6
  base_model: liuhaotian/llava-v1.5-13b
7
  model-index:
8
- - name: liuhaotian/llava-v1.5-13b_10.0
9
  results: []
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
- # liuhaotian/llava-v1.5-13b_10.0
16
 
17
- This model is a fine-tuned version of [liuhaotian/llava-v1.5-13b_10.0](https://huggingface.co/liuhaotian/llava-v1.5-13b_10.0) on an unknown dataset.
18
- It achieves the following results on the evaluation set:
19
- - eval_loss: 0.0041
20
- - eval_runtime: 55.2102
21
- - eval_samples_per_second: 15.704
22
- - eval_steps_per_second: 0.507
23
- - epoch: 9.0
24
- - step: 252
25
 
26
  ## Model description
27
 
@@ -45,13 +37,13 @@ The following hyperparameters were used during training:
45
  - eval_batch_size: 4
46
  - seed: 42
47
  - distributed_type: multi-GPU
48
- - num_devices: 8
49
- - total_train_batch_size: 32
50
- - total_eval_batch_size: 32
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: cosine
53
  - lr_scheduler_warmup_ratio: 0.03
54
- - num_epochs: 10.0
55
 
56
  ### Framework versions
57
 
 
1
  ---
2
  library_name: peft
3
  tags:
 
4
  - generated_from_trainer
5
  base_model: liuhaotian/llava-v1.5-13b
6
  model-index:
7
+ - name: llava_13b_country_synthetic
8
  results: []
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
  should probably proofread and complete it, then remove this comment. -->
13
 
14
+ # llava_13b_country_synthetic
15
 
16
+ This model is a fine-tuned version of [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) on an unknown dataset.
 
 
 
 
 
 
 
17
 
18
  ## Model description
19
 
 
37
  - eval_batch_size: 4
38
  - seed: 42
39
  - distributed_type: multi-GPU
40
+ - num_devices: 4
41
+ - total_train_batch_size: 16
42
+ - total_eval_batch_size: 16
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: cosine
45
  - lr_scheduler_warmup_ratio: 0.03
46
+ - num_epochs: 20.0
47
 
48
  ### Framework versions
49
 
adapter_config.json CHANGED
@@ -20,13 +20,13 @@
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
- "v_proj",
24
- "up_proj",
25
- "down_proj",
26
- "q_proj",
27
  "k_proj",
 
 
28
  "gate_proj",
29
- "o_proj"
 
30
  ],
31
  "task_type": "CAUSAL_LM",
32
  "use_dora": false,
 
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
+ "o_proj",
 
 
 
24
  "k_proj",
25
+ "down_proj",
26
+ "up_proj",
27
  "gate_proj",
28
+ "v_proj",
29
+ "q_proj"
30
  ],
31
  "task_type": "CAUSAL_LM",
32
  "use_dora": false,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a44c95a2e917e10e9b45f38b237b623a1d10e6fd2d8443d93173c482f6f9ef2
3
  size 1001466944
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416d87c164ef00b2ce10593e22af031c016fadc19a07145a44f3b9e9dc95895c
3
  size 1001466944
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.5-13b",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13824,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 4096,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_resampler_type": null,
24
+ "mm_use_im_patch_token": false,
25
+ "mm_use_im_start_end": false,
26
+ "mm_vision_select_feature": "patch",
27
+ "mm_vision_select_layer": -2,
28
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
29
+ "model_type": "llava_llama",
30
+ "num_attention_heads": 40,
31
+ "num_hidden_layers": 40,
32
+ "num_key_value_heads": 40,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "quantization_config": {
36
+ "bnb_4bit_compute_dtype": "bfloat16",
37
+ "bnb_4bit_quant_type": "nf4",
38
+ "bnb_4bit_use_double_quant": true,
39
+ "llm_int8_enable_fp32_cpu_offload": false,
40
+ "llm_int8_has_fp16_weight": false,
41
+ "llm_int8_skip_modules": [
42
+ "mm_projector"
43
+ ],
44
+ "llm_int8_threshold": 6.0,
45
+ "load_in_4bit": true,
46
+ "load_in_8bit": false,
47
+ "quant_method": "bitsandbytes"
48
+ },
49
+ "rms_norm_eps": 1e-05,
50
+ "rope_scaling": null,
51
+ "rope_theta": 10000.0,
52
+ "tie_word_embeddings": false,
53
+ "tokenizer_model_max_length": 2048,
54
+ "tokenizer_padding_side": "right",
55
+ "torch_dtype": "bfloat16",
56
+ "transformers_version": "4.37.2",
57
+ "tune_mm_mlp_adapter": false,
58
+ "tune_mm_vision_resampler": false,
59
+ "unfreeze_mm_vision_tower": false,
60
+ "use_cache": true,
61
+ "use_mm_proj": true,
62
+ "vocab_size": 32000
63
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d68ddfe6ce0358ed97665d43ab246ef5884bd28da1ad884819ce894242a22ee8
3
+ size 62937264
num_examples=100/llava-v1.5-13b_1.0/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.5-13b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
num_examples=100/llava-v1.5-13b_1.0/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.5-13b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "k_proj",
25
+ "down_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
num_examples=100/llava-v1.5-13b_1.0/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416d87c164ef00b2ce10593e22af031c016fadc19a07145a44f3b9e9dc95895c
3
+ size 1001466944
num_examples=100/llava-v1.5-13b_1.0/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
num_examples=100/llava-v1.5-13b_1.0/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
num_examples=100/llava-v1.5-13b_1.0/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 2048,
35
+ "pad_token": "<unk>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
num_examples=100/llava-v1.5-13b_1.0/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ee33646e54e626cfd513e17c021e6143b27b728c7a42f112b863c919f3a680
3
+ size 6840
trainer_state.json ADDED
@@ -0,0 +1,1790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 280,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "learning_rate": 0.0,
14
+ "loss": 1.4847,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.07,
19
+ "learning_rate": 6.309297535714573e-05,
20
+ "loss": 1.2044,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.11,
25
+ "learning_rate": 0.0001,
26
+ "loss": 1.1772,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.14,
31
+ "learning_rate": 0.00012618595071429146,
32
+ "loss": 1.1318,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.18,
37
+ "learning_rate": 0.0001464973520717927,
38
+ "loss": 1.0803,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.21,
43
+ "learning_rate": 0.00016309297535714573,
44
+ "loss": 1.0287,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.25,
49
+ "learning_rate": 0.00017712437491614223,
50
+ "loss": 0.9974,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.29,
55
+ "learning_rate": 0.0001892789260714372,
56
+ "loss": 0.958,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.32,
61
+ "learning_rate": 0.0002,
62
+ "loss": 0.9355,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.36,
67
+ "learning_rate": 0.0002,
68
+ "loss": 0.9544,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.39,
73
+ "learning_rate": 0.0002,
74
+ "loss": 0.8867,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.43,
79
+ "learning_rate": 0.0002,
80
+ "loss": 0.8466,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.46,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.8225,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.5,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.7851,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.54,
97
+ "learning_rate": 0.0002,
98
+ "loss": 0.7768,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.57,
103
+ "learning_rate": 0.0002,
104
+ "loss": 0.7356,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.61,
109
+ "learning_rate": 0.0002,
110
+ "loss": 0.6515,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.64,
115
+ "learning_rate": 0.0002,
116
+ "loss": 0.7061,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.68,
121
+ "learning_rate": 0.0002,
122
+ "loss": 0.6145,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.71,
127
+ "learning_rate": 0.0002,
128
+ "loss": 0.6616,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.75,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.523,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.79,
139
+ "learning_rate": 0.0002,
140
+ "loss": 0.4883,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.82,
145
+ "learning_rate": 0.0002,
146
+ "loss": 0.452,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.86,
151
+ "learning_rate": 0.0002,
152
+ "loss": 0.3769,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.89,
157
+ "learning_rate": 0.0002,
158
+ "loss": 0.4295,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.93,
163
+ "learning_rate": 0.0002,
164
+ "loss": 0.3565,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.96,
169
+ "learning_rate": 0.0002,
170
+ "loss": 0.4003,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 1.0,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.3266,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 1.0,
181
+ "eval_loss": 0.2492515742778778,
182
+ "eval_runtime": 55.0422,
183
+ "eval_samples_per_second": 15.752,
184
+ "eval_steps_per_second": 0.509,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 1.04,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.232,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 1.07,
195
+ "learning_rate": 0.0002,
196
+ "loss": 0.2445,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 1.11,
201
+ "learning_rate": 0.0002,
202
+ "loss": 0.2248,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 1.14,
207
+ "learning_rate": 0.0002,
208
+ "loss": 0.1929,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 1.18,
213
+ "learning_rate": 0.0002,
214
+ "loss": 0.2116,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 1.21,
219
+ "learning_rate": 0.0002,
220
+ "loss": 0.1934,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 1.25,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.2355,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 1.29,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.1541,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 1.32,
237
+ "learning_rate": 0.0002,
238
+ "loss": 0.1533,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 1.36,
243
+ "learning_rate": 0.0002,
244
+ "loss": 0.0981,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 1.39,
249
+ "learning_rate": 0.0002,
250
+ "loss": 0.106,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 1.43,
255
+ "learning_rate": 0.0002,
256
+ "loss": 0.1764,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 1.46,
261
+ "learning_rate": 0.0002,
262
+ "loss": 0.1153,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 1.5,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.1043,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 1.54,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.1349,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 1.57,
279
+ "learning_rate": 0.0002,
280
+ "loss": 0.1331,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 1.61,
285
+ "learning_rate": 0.0002,
286
+ "loss": 0.0688,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 1.64,
291
+ "learning_rate": 0.0002,
292
+ "loss": 0.0732,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 1.68,
297
+ "learning_rate": 0.0002,
298
+ "loss": 0.0936,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 1.71,
303
+ "learning_rate": 0.0002,
304
+ "loss": 0.1128,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 1.75,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.1004,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 1.79,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.0567,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 1.82,
321
+ "learning_rate": 0.0002,
322
+ "loss": 0.1314,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 1.86,
327
+ "learning_rate": 0.0002,
328
+ "loss": 0.0496,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 1.89,
333
+ "learning_rate": 0.0002,
334
+ "loss": 0.1106,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 1.93,
339
+ "learning_rate": 0.0002,
340
+ "loss": 0.1594,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 1.96,
345
+ "learning_rate": 0.0002,
346
+ "loss": 0.1061,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 2.0,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.0401,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 2.0,
357
+ "eval_loss": 0.04567016288638115,
358
+ "eval_runtime": 55.1162,
359
+ "eval_samples_per_second": 15.73,
360
+ "eval_steps_per_second": 0.508,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 2.04,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.0377,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 2.07,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.0321,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 2.11,
377
+ "learning_rate": 0.0002,
378
+ "loss": 0.0318,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 2.14,
383
+ "learning_rate": 0.0002,
384
+ "loss": 0.0449,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 2.18,
389
+ "learning_rate": 0.0002,
390
+ "loss": 0.0209,
391
+ "step": 61
392
+ },
393
+ {
394
+ "epoch": 2.21,
395
+ "learning_rate": 0.0002,
396
+ "loss": 0.0389,
397
+ "step": 62
398
+ },
399
+ {
400
+ "epoch": 2.25,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.0246,
403
+ "step": 63
404
+ },
405
+ {
406
+ "epoch": 2.29,
407
+ "learning_rate": 0.0002,
408
+ "loss": 0.0221,
409
+ "step": 64
410
+ },
411
+ {
412
+ "epoch": 2.32,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.0326,
415
+ "step": 65
416
+ },
417
+ {
418
+ "epoch": 2.36,
419
+ "learning_rate": 0.0002,
420
+ "loss": 0.03,
421
+ "step": 66
422
+ },
423
+ {
424
+ "epoch": 2.39,
425
+ "learning_rate": 0.0002,
426
+ "loss": 0.0145,
427
+ "step": 67
428
+ },
429
+ {
430
+ "epoch": 2.43,
431
+ "learning_rate": 0.0002,
432
+ "loss": 0.0309,
433
+ "step": 68
434
+ },
435
+ {
436
+ "epoch": 2.46,
437
+ "learning_rate": 0.0002,
438
+ "loss": 0.0397,
439
+ "step": 69
440
+ },
441
+ {
442
+ "epoch": 2.5,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.0283,
445
+ "step": 70
446
+ },
447
+ {
448
+ "epoch": 2.54,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.0229,
451
+ "step": 71
452
+ },
453
+ {
454
+ "epoch": 2.57,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.0211,
457
+ "step": 72
458
+ },
459
+ {
460
+ "epoch": 2.61,
461
+ "learning_rate": 0.0002,
462
+ "loss": 0.0135,
463
+ "step": 73
464
+ },
465
+ {
466
+ "epoch": 2.64,
467
+ "learning_rate": 0.0002,
468
+ "loss": 0.0377,
469
+ "step": 74
470
+ },
471
+ {
472
+ "epoch": 2.68,
473
+ "learning_rate": 0.0002,
474
+ "loss": 0.0333,
475
+ "step": 75
476
+ },
477
+ {
478
+ "epoch": 2.71,
479
+ "learning_rate": 0.0002,
480
+ "loss": 0.022,
481
+ "step": 76
482
+ },
483
+ {
484
+ "epoch": 2.75,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.0132,
487
+ "step": 77
488
+ },
489
+ {
490
+ "epoch": 2.79,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.0258,
493
+ "step": 78
494
+ },
495
+ {
496
+ "epoch": 2.82,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.0312,
499
+ "step": 79
500
+ },
501
+ {
502
+ "epoch": 2.86,
503
+ "learning_rate": 0.0002,
504
+ "loss": 0.0261,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 2.89,
509
+ "learning_rate": 0.0002,
510
+ "loss": 0.0217,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 2.93,
515
+ "learning_rate": 0.0002,
516
+ "loss": 0.0286,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 2.96,
521
+ "learning_rate": 0.0002,
522
+ "loss": 0.0341,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 3.0,
527
+ "learning_rate": 0.0002,
528
+ "loss": 0.0097,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 3.0,
533
+ "eval_loss": 0.015407511964440346,
534
+ "eval_runtime": 55.2224,
535
+ "eval_samples_per_second": 15.7,
536
+ "eval_steps_per_second": 0.507,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 3.04,
541
+ "learning_rate": 0.0002,
542
+ "loss": 0.0076,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 3.07,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.0137,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 3.11,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.009,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 3.14,
559
+ "learning_rate": 0.0002,
560
+ "loss": 0.0083,
561
+ "step": 88
562
+ },
563
+ {
564
+ "epoch": 3.18,
565
+ "learning_rate": 0.0002,
566
+ "loss": 0.011,
567
+ "step": 89
568
+ },
569
+ {
570
+ "epoch": 3.21,
571
+ "learning_rate": 0.0002,
572
+ "loss": 0.0092,
573
+ "step": 90
574
+ },
575
+ {
576
+ "epoch": 3.25,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.0108,
579
+ "step": 91
580
+ },
581
+ {
582
+ "epoch": 3.29,
583
+ "learning_rate": 0.0002,
584
+ "loss": 0.007,
585
+ "step": 92
586
+ },
587
+ {
588
+ "epoch": 3.32,
589
+ "learning_rate": 0.0002,
590
+ "loss": 0.008,
591
+ "step": 93
592
+ },
593
+ {
594
+ "epoch": 3.36,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.0063,
597
+ "step": 94
598
+ },
599
+ {
600
+ "epoch": 3.39,
601
+ "learning_rate": 0.0002,
602
+ "loss": 0.0117,
603
+ "step": 95
604
+ },
605
+ {
606
+ "epoch": 3.43,
607
+ "learning_rate": 0.0002,
608
+ "loss": 0.015,
609
+ "step": 96
610
+ },
611
+ {
612
+ "epoch": 3.46,
613
+ "learning_rate": 0.0002,
614
+ "loss": 0.0117,
615
+ "step": 97
616
+ },
617
+ {
618
+ "epoch": 3.5,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.0102,
621
+ "step": 98
622
+ },
623
+ {
624
+ "epoch": 3.54,
625
+ "learning_rate": 0.0002,
626
+ "loss": 0.0113,
627
+ "step": 99
628
+ },
629
+ {
630
+ "epoch": 3.57,
631
+ "learning_rate": 0.0002,
632
+ "loss": 0.006,
633
+ "step": 100
634
+ },
635
+ {
636
+ "epoch": 3.61,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.0157,
639
+ "step": 101
640
+ },
641
+ {
642
+ "epoch": 3.64,
643
+ "learning_rate": 0.0002,
644
+ "loss": 0.0109,
645
+ "step": 102
646
+ },
647
+ {
648
+ "epoch": 3.68,
649
+ "learning_rate": 0.0002,
650
+ "loss": 0.0157,
651
+ "step": 103
652
+ },
653
+ {
654
+ "epoch": 3.71,
655
+ "learning_rate": 0.0002,
656
+ "loss": 0.0097,
657
+ "step": 104
658
+ },
659
+ {
660
+ "epoch": 3.75,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.0159,
663
+ "step": 105
664
+ },
665
+ {
666
+ "epoch": 3.79,
667
+ "learning_rate": 0.0002,
668
+ "loss": 0.012,
669
+ "step": 106
670
+ },
671
+ {
672
+ "epoch": 3.82,
673
+ "learning_rate": 0.0002,
674
+ "loss": 0.009,
675
+ "step": 107
676
+ },
677
+ {
678
+ "epoch": 3.86,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.0076,
681
+ "step": 108
682
+ },
683
+ {
684
+ "epoch": 3.89,
685
+ "learning_rate": 0.0002,
686
+ "loss": 0.0098,
687
+ "step": 109
688
+ },
689
+ {
690
+ "epoch": 3.93,
691
+ "learning_rate": 0.0002,
692
+ "loss": 0.0204,
693
+ "step": 110
694
+ },
695
+ {
696
+ "epoch": 3.96,
697
+ "learning_rate": 0.0002,
698
+ "loss": 0.005,
699
+ "step": 111
700
+ },
701
+ {
702
+ "epoch": 4.0,
703
+ "learning_rate": 0.0002,
704
+ "loss": 0.0111,
705
+ "step": 112
706
+ },
707
+ {
708
+ "epoch": 4.0,
709
+ "eval_loss": 0.009237131103873253,
710
+ "eval_runtime": 55.2594,
711
+ "eval_samples_per_second": 15.69,
712
+ "eval_steps_per_second": 0.507,
713
+ "step": 112
714
+ },
715
+ {
716
+ "epoch": 4.04,
717
+ "learning_rate": 0.0002,
718
+ "loss": 0.0108,
719
+ "step": 113
720
+ },
721
+ {
722
+ "epoch": 4.07,
723
+ "learning_rate": 0.0002,
724
+ "loss": 0.0056,
725
+ "step": 114
726
+ },
727
+ {
728
+ "epoch": 4.11,
729
+ "learning_rate": 0.0002,
730
+ "loss": 0.0056,
731
+ "step": 115
732
+ },
733
+ {
734
+ "epoch": 4.14,
735
+ "learning_rate": 0.0002,
736
+ "loss": 0.0067,
737
+ "step": 116
738
+ },
739
+ {
740
+ "epoch": 4.18,
741
+ "learning_rate": 0.0002,
742
+ "loss": 0.0054,
743
+ "step": 117
744
+ },
745
+ {
746
+ "epoch": 4.21,
747
+ "learning_rate": 0.0002,
748
+ "loss": 0.0102,
749
+ "step": 118
750
+ },
751
+ {
752
+ "epoch": 4.25,
753
+ "learning_rate": 0.0002,
754
+ "loss": 0.012,
755
+ "step": 119
756
+ },
757
+ {
758
+ "epoch": 4.29,
759
+ "learning_rate": 0.0002,
760
+ "loss": 0.0109,
761
+ "step": 120
762
+ },
763
+ {
764
+ "epoch": 4.32,
765
+ "learning_rate": 0.0002,
766
+ "loss": 0.0092,
767
+ "step": 121
768
+ },
769
+ {
770
+ "epoch": 4.36,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.0062,
773
+ "step": 122
774
+ },
775
+ {
776
+ "epoch": 4.39,
777
+ "learning_rate": 0.0002,
778
+ "loss": 0.0063,
779
+ "step": 123
780
+ },
781
+ {
782
+ "epoch": 4.43,
783
+ "learning_rate": 0.0002,
784
+ "loss": 0.0051,
785
+ "step": 124
786
+ },
787
+ {
788
+ "epoch": 4.46,
789
+ "learning_rate": 0.0002,
790
+ "loss": 0.0044,
791
+ "step": 125
792
+ },
793
+ {
794
+ "epoch": 4.5,
795
+ "learning_rate": 0.0002,
796
+ "loss": 0.0058,
797
+ "step": 126
798
+ },
799
+ {
800
+ "epoch": 4.54,
801
+ "learning_rate": 0.0002,
802
+ "loss": 0.0045,
803
+ "step": 127
804
+ },
805
+ {
806
+ "epoch": 4.57,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.0048,
809
+ "step": 128
810
+ },
811
+ {
812
+ "epoch": 4.61,
813
+ "learning_rate": 0.0002,
814
+ "loss": 0.0061,
815
+ "step": 129
816
+ },
817
+ {
818
+ "epoch": 4.64,
819
+ "learning_rate": 0.0002,
820
+ "loss": 0.0034,
821
+ "step": 130
822
+ },
823
+ {
824
+ "epoch": 4.68,
825
+ "learning_rate": 0.0002,
826
+ "loss": 0.004,
827
+ "step": 131
828
+ },
829
+ {
830
+ "epoch": 4.71,
831
+ "learning_rate": 0.0002,
832
+ "loss": 0.0039,
833
+ "step": 132
834
+ },
835
+ {
836
+ "epoch": 4.75,
837
+ "learning_rate": 0.0002,
838
+ "loss": 0.007,
839
+ "step": 133
840
+ },
841
+ {
842
+ "epoch": 4.79,
843
+ "learning_rate": 0.0002,
844
+ "loss": 0.0041,
845
+ "step": 134
846
+ },
847
+ {
848
+ "epoch": 4.82,
849
+ "learning_rate": 0.0002,
850
+ "loss": 0.0086,
851
+ "step": 135
852
+ },
853
+ {
854
+ "epoch": 4.86,
855
+ "learning_rate": 0.0002,
856
+ "loss": 0.0056,
857
+ "step": 136
858
+ },
859
+ {
860
+ "epoch": 4.89,
861
+ "learning_rate": 0.0002,
862
+ "loss": 0.0085,
863
+ "step": 137
864
+ },
865
+ {
866
+ "epoch": 4.93,
867
+ "learning_rate": 0.0002,
868
+ "loss": 0.0099,
869
+ "step": 138
870
+ },
871
+ {
872
+ "epoch": 4.96,
873
+ "learning_rate": 0.0002,
874
+ "loss": 0.0031,
875
+ "step": 139
876
+ },
877
+ {
878
+ "epoch": 5.0,
879
+ "learning_rate": 0.0002,
880
+ "loss": 0.0042,
881
+ "step": 140
882
+ },
883
+ {
884
+ "epoch": 5.0,
885
+ "eval_loss": 0.006931006908416748,
886
+ "eval_runtime": 55.2933,
887
+ "eval_samples_per_second": 15.68,
888
+ "eval_steps_per_second": 0.506,
889
+ "step": 140
890
+ },
891
+ {
892
+ "epoch": 5.04,
893
+ "learning_rate": 0.0002,
894
+ "loss": 0.0072,
895
+ "step": 141
896
+ },
897
+ {
898
+ "epoch": 5.07,
899
+ "learning_rate": 0.0002,
900
+ "loss": 0.0048,
901
+ "step": 142
902
+ },
903
+ {
904
+ "epoch": 5.11,
905
+ "learning_rate": 0.0002,
906
+ "loss": 0.0074,
907
+ "step": 143
908
+ },
909
+ {
910
+ "epoch": 5.14,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.0086,
913
+ "step": 144
914
+ },
915
+ {
916
+ "epoch": 5.18,
917
+ "learning_rate": 0.0002,
918
+ "loss": 0.0078,
919
+ "step": 145
920
+ },
921
+ {
922
+ "epoch": 5.21,
923
+ "learning_rate": 0.0002,
924
+ "loss": 0.0043,
925
+ "step": 146
926
+ },
927
+ {
928
+ "epoch": 5.25,
929
+ "learning_rate": 0.0002,
930
+ "loss": 0.005,
931
+ "step": 147
932
+ },
933
+ {
934
+ "epoch": 5.29,
935
+ "learning_rate": 0.0002,
936
+ "loss": 0.0057,
937
+ "step": 148
938
+ },
939
+ {
940
+ "epoch": 5.32,
941
+ "learning_rate": 0.0002,
942
+ "loss": 0.0083,
943
+ "step": 149
944
+ },
945
+ {
946
+ "epoch": 5.36,
947
+ "learning_rate": 0.0002,
948
+ "loss": 0.0069,
949
+ "step": 150
950
+ },
951
+ {
952
+ "epoch": 5.39,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.0039,
955
+ "step": 151
956
+ },
957
+ {
958
+ "epoch": 5.43,
959
+ "learning_rate": 0.0002,
960
+ "loss": 0.0058,
961
+ "step": 152
962
+ },
963
+ {
964
+ "epoch": 5.46,
965
+ "learning_rate": 0.0002,
966
+ "loss": 0.0058,
967
+ "step": 153
968
+ },
969
+ {
970
+ "epoch": 5.5,
971
+ "learning_rate": 0.0002,
972
+ "loss": 0.0101,
973
+ "step": 154
974
+ },
975
+ {
976
+ "epoch": 5.54,
977
+ "learning_rate": 0.0002,
978
+ "loss": 0.0038,
979
+ "step": 155
980
+ },
981
+ {
982
+ "epoch": 5.57,
983
+ "learning_rate": 0.0002,
984
+ "loss": 0.0085,
985
+ "step": 156
986
+ },
987
+ {
988
+ "epoch": 5.61,
989
+ "learning_rate": 0.0002,
990
+ "loss": 0.0052,
991
+ "step": 157
992
+ },
993
+ {
994
+ "epoch": 5.64,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.0045,
997
+ "step": 158
998
+ },
999
+ {
1000
+ "epoch": 5.68,
1001
+ "learning_rate": 0.0002,
1002
+ "loss": 0.0128,
1003
+ "step": 159
1004
+ },
1005
+ {
1006
+ "epoch": 5.71,
1007
+ "learning_rate": 0.0002,
1008
+ "loss": 0.0043,
1009
+ "step": 160
1010
+ },
1011
+ {
1012
+ "epoch": 5.75,
1013
+ "learning_rate": 0.0002,
1014
+ "loss": 0.0033,
1015
+ "step": 161
1016
+ },
1017
+ {
1018
+ "epoch": 5.79,
1019
+ "learning_rate": 0.0002,
1020
+ "loss": 0.0026,
1021
+ "step": 162
1022
+ },
1023
+ {
1024
+ "epoch": 5.82,
1025
+ "learning_rate": 0.0002,
1026
+ "loss": 0.0027,
1027
+ "step": 163
1028
+ },
1029
+ {
1030
+ "epoch": 5.86,
1031
+ "learning_rate": 0.0002,
1032
+ "loss": 0.0159,
1033
+ "step": 164
1034
+ },
1035
+ {
1036
+ "epoch": 5.89,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.0037,
1039
+ "step": 165
1040
+ },
1041
+ {
1042
+ "epoch": 5.93,
1043
+ "learning_rate": 0.0002,
1044
+ "loss": 0.0057,
1045
+ "step": 166
1046
+ },
1047
+ {
1048
+ "epoch": 5.96,
1049
+ "learning_rate": 0.0002,
1050
+ "loss": 0.0079,
1051
+ "step": 167
1052
+ },
1053
+ {
1054
+ "epoch": 6.0,
1055
+ "learning_rate": 0.0002,
1056
+ "loss": 0.0049,
1057
+ "step": 168
1058
+ },
1059
+ {
1060
+ "epoch": 6.0,
1061
+ "eval_loss": 0.005192028358578682,
1062
+ "eval_runtime": 55.2474,
1063
+ "eval_samples_per_second": 15.693,
1064
+ "eval_steps_per_second": 0.507,
1065
+ "step": 168
1066
+ },
1067
+ {
1068
+ "epoch": 6.04,
1069
+ "learning_rate": 0.0002,
1070
+ "loss": 0.0025,
1071
+ "step": 169
1072
+ },
1073
+ {
1074
+ "epoch": 6.07,
1075
+ "learning_rate": 0.0002,
1076
+ "loss": 0.0062,
1077
+ "step": 170
1078
+ },
1079
+ {
1080
+ "epoch": 6.11,
1081
+ "learning_rate": 0.0002,
1082
+ "loss": 0.0025,
1083
+ "step": 171
1084
+ },
1085
+ {
1086
+ "epoch": 6.14,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 0.0077,
1089
+ "step": 172
1090
+ },
1091
+ {
1092
+ "epoch": 6.18,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.0027,
1095
+ "step": 173
1096
+ },
1097
+ {
1098
+ "epoch": 6.21,
1099
+ "learning_rate": 0.0002,
1100
+ "loss": 0.0067,
1101
+ "step": 174
1102
+ },
1103
+ {
1104
+ "epoch": 6.25,
1105
+ "learning_rate": 0.0002,
1106
+ "loss": 0.0032,
1107
+ "step": 175
1108
+ },
1109
+ {
1110
+ "epoch": 6.29,
1111
+ "learning_rate": 0.0002,
1112
+ "loss": 0.006,
1113
+ "step": 176
1114
+ },
1115
+ {
1116
+ "epoch": 6.32,
1117
+ "learning_rate": 0.0002,
1118
+ "loss": 0.0072,
1119
+ "step": 177
1120
+ },
1121
+ {
1122
+ "epoch": 6.36,
1123
+ "learning_rate": 0.0002,
1124
+ "loss": 0.0101,
1125
+ "step": 178
1126
+ },
1127
+ {
1128
+ "epoch": 6.39,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 0.0078,
1131
+ "step": 179
1132
+ },
1133
+ {
1134
+ "epoch": 6.43,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.003,
1137
+ "step": 180
1138
+ },
1139
+ {
1140
+ "epoch": 6.46,
1141
+ "learning_rate": 0.0002,
1142
+ "loss": 0.006,
1143
+ "step": 181
1144
+ },
1145
+ {
1146
+ "epoch": 6.5,
1147
+ "learning_rate": 0.0002,
1148
+ "loss": 0.0056,
1149
+ "step": 182
1150
+ },
1151
+ {
1152
+ "epoch": 6.54,
1153
+ "learning_rate": 0.0002,
1154
+ "loss": 0.0053,
1155
+ "step": 183
1156
+ },
1157
+ {
1158
+ "epoch": 6.57,
1159
+ "learning_rate": 0.0002,
1160
+ "loss": 0.0098,
1161
+ "step": 184
1162
+ },
1163
+ {
1164
+ "epoch": 6.61,
1165
+ "learning_rate": 0.0002,
1166
+ "loss": 0.0052,
1167
+ "step": 185
1168
+ },
1169
+ {
1170
+ "epoch": 6.64,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 0.0045,
1173
+ "step": 186
1174
+ },
1175
+ {
1176
+ "epoch": 6.68,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.0082,
1179
+ "step": 187
1180
+ },
1181
+ {
1182
+ "epoch": 6.71,
1183
+ "learning_rate": 0.0002,
1184
+ "loss": 0.0042,
1185
+ "step": 188
1186
+ },
1187
+ {
1188
+ "epoch": 6.75,
1189
+ "learning_rate": 0.0002,
1190
+ "loss": 0.0043,
1191
+ "step": 189
1192
+ },
1193
+ {
1194
+ "epoch": 6.79,
1195
+ "learning_rate": 0.0002,
1196
+ "loss": 0.0062,
1197
+ "step": 190
1198
+ },
1199
+ {
1200
+ "epoch": 6.82,
1201
+ "learning_rate": 0.0002,
1202
+ "loss": 0.0069,
1203
+ "step": 191
1204
+ },
1205
+ {
1206
+ "epoch": 6.86,
1207
+ "learning_rate": 0.0002,
1208
+ "loss": 0.0047,
1209
+ "step": 192
1210
+ },
1211
+ {
1212
+ "epoch": 6.89,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 0.0044,
1215
+ "step": 193
1216
+ },
1217
+ {
1218
+ "epoch": 6.93,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.0046,
1221
+ "step": 194
1222
+ },
1223
+ {
1224
+ "epoch": 6.96,
1225
+ "learning_rate": 0.0002,
1226
+ "loss": 0.003,
1227
+ "step": 195
1228
+ },
1229
+ {
1230
+ "epoch": 7.0,
1231
+ "learning_rate": 0.0002,
1232
+ "loss": 0.0022,
1233
+ "step": 196
1234
+ },
1235
+ {
1236
+ "epoch": 7.0,
1237
+ "eval_loss": 0.0039033088833093643,
1238
+ "eval_runtime": 55.2409,
1239
+ "eval_samples_per_second": 15.695,
1240
+ "eval_steps_per_second": 0.507,
1241
+ "step": 196
1242
+ },
1243
+ {
1244
+ "epoch": 7.04,
1245
+ "learning_rate": 0.0002,
1246
+ "loss": 0.0047,
1247
+ "step": 197
1248
+ },
1249
+ {
1250
+ "epoch": 7.07,
1251
+ "learning_rate": 0.0002,
1252
+ "loss": 0.0064,
1253
+ "step": 198
1254
+ },
1255
+ {
1256
+ "epoch": 7.11,
1257
+ "learning_rate": 0.0002,
1258
+ "loss": 0.0044,
1259
+ "step": 199
1260
+ },
1261
+ {
1262
+ "epoch": 7.14,
1263
+ "learning_rate": 0.0002,
1264
+ "loss": 0.0051,
1265
+ "step": 200
1266
+ },
1267
+ {
1268
+ "epoch": 7.18,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 0.0026,
1271
+ "step": 201
1272
+ },
1273
+ {
1274
+ "epoch": 7.21,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.0042,
1277
+ "step": 202
1278
+ },
1279
+ {
1280
+ "epoch": 7.25,
1281
+ "learning_rate": 0.0002,
1282
+ "loss": 0.0034,
1283
+ "step": 203
1284
+ },
1285
+ {
1286
+ "epoch": 7.29,
1287
+ "learning_rate": 0.0002,
1288
+ "loss": 0.0012,
1289
+ "step": 204
1290
+ },
1291
+ {
1292
+ "epoch": 7.32,
1293
+ "learning_rate": 0.0002,
1294
+ "loss": 0.002,
1295
+ "step": 205
1296
+ },
1297
+ {
1298
+ "epoch": 7.36,
1299
+ "learning_rate": 0.0002,
1300
+ "loss": 0.0061,
1301
+ "step": 206
1302
+ },
1303
+ {
1304
+ "epoch": 7.39,
1305
+ "learning_rate": 0.0002,
1306
+ "loss": 0.005,
1307
+ "step": 207
1308
+ },
1309
+ {
1310
+ "epoch": 7.43,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 0.0065,
1313
+ "step": 208
1314
+ },
1315
+ {
1316
+ "epoch": 7.46,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.0019,
1319
+ "step": 209
1320
+ },
1321
+ {
1322
+ "epoch": 7.5,
1323
+ "learning_rate": 0.0002,
1324
+ "loss": 0.0027,
1325
+ "step": 210
1326
+ },
1327
+ {
1328
+ "epoch": 7.54,
1329
+ "learning_rate": 0.0002,
1330
+ "loss": 0.0037,
1331
+ "step": 211
1332
+ },
1333
+ {
1334
+ "epoch": 7.57,
1335
+ "learning_rate": 0.0002,
1336
+ "loss": 0.0052,
1337
+ "step": 212
1338
+ },
1339
+ {
1340
+ "epoch": 7.61,
1341
+ "learning_rate": 0.0002,
1342
+ "loss": 0.0029,
1343
+ "step": 213
1344
+ },
1345
+ {
1346
+ "epoch": 7.64,
1347
+ "learning_rate": 0.0002,
1348
+ "loss": 0.0025,
1349
+ "step": 214
1350
+ },
1351
+ {
1352
+ "epoch": 7.68,
1353
+ "learning_rate": 0.0002,
1354
+ "loss": 0.0019,
1355
+ "step": 215
1356
+ },
1357
+ {
1358
+ "epoch": 7.71,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.0038,
1361
+ "step": 216
1362
+ },
1363
+ {
1364
+ "epoch": 7.75,
1365
+ "learning_rate": 0.0002,
1366
+ "loss": 0.004,
1367
+ "step": 217
1368
+ },
1369
+ {
1370
+ "epoch": 7.79,
1371
+ "learning_rate": 0.0002,
1372
+ "loss": 0.0033,
1373
+ "step": 218
1374
+ },
1375
+ {
1376
+ "epoch": 7.82,
1377
+ "learning_rate": 0.0002,
1378
+ "loss": 0.0066,
1379
+ "step": 219
1380
+ },
1381
+ {
1382
+ "epoch": 7.86,
1383
+ "learning_rate": 0.0002,
1384
+ "loss": 0.0047,
1385
+ "step": 220
1386
+ },
1387
+ {
1388
+ "epoch": 7.89,
1389
+ "learning_rate": 0.0002,
1390
+ "loss": 0.0032,
1391
+ "step": 221
1392
+ },
1393
+ {
1394
+ "epoch": 7.93,
1395
+ "learning_rate": 0.0002,
1396
+ "loss": 0.0065,
1397
+ "step": 222
1398
+ },
1399
+ {
1400
+ "epoch": 7.96,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.0025,
1403
+ "step": 223
1404
+ },
1405
+ {
1406
+ "epoch": 8.0,
1407
+ "learning_rate": 0.0002,
1408
+ "loss": 0.002,
1409
+ "step": 224
1410
+ },
1411
+ {
1412
+ "epoch": 8.0,
1413
+ "eval_loss": 0.005082768388092518,
1414
+ "eval_runtime": 55.2726,
1415
+ "eval_samples_per_second": 15.686,
1416
+ "eval_steps_per_second": 0.507,
1417
+ "step": 224
1418
+ },
1419
+ {
1420
+ "epoch": 8.04,
1421
+ "learning_rate": 0.0002,
1422
+ "loss": 0.0051,
1423
+ "step": 225
1424
+ },
1425
+ {
1426
+ "epoch": 8.07,
1427
+ "learning_rate": 0.0002,
1428
+ "loss": 0.0087,
1429
+ "step": 226
1430
+ },
1431
+ {
1432
+ "epoch": 8.11,
1433
+ "learning_rate": 0.0002,
1434
+ "loss": 0.0025,
1435
+ "step": 227
1436
+ },
1437
+ {
1438
+ "epoch": 8.14,
1439
+ "learning_rate": 0.0002,
1440
+ "loss": 0.0046,
1441
+ "step": 228
1442
+ },
1443
+ {
1444
+ "epoch": 8.18,
1445
+ "learning_rate": 0.0002,
1446
+ "loss": 0.0023,
1447
+ "step": 229
1448
+ },
1449
+ {
1450
+ "epoch": 8.21,
1451
+ "learning_rate": 0.0002,
1452
+ "loss": 0.0033,
1453
+ "step": 230
1454
+ },
1455
+ {
1456
+ "epoch": 8.25,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 0.0024,
1459
+ "step": 231
1460
+ },
1461
+ {
1462
+ "epoch": 8.29,
1463
+ "learning_rate": 0.0002,
1464
+ "loss": 0.0048,
1465
+ "step": 232
1466
+ },
1467
+ {
1468
+ "epoch": 8.32,
1469
+ "learning_rate": 0.0002,
1470
+ "loss": 0.0036,
1471
+ "step": 233
1472
+ },
1473
+ {
1474
+ "epoch": 8.36,
1475
+ "learning_rate": 0.0002,
1476
+ "loss": 0.0025,
1477
+ "step": 234
1478
+ },
1479
+ {
1480
+ "epoch": 8.39,
1481
+ "learning_rate": 0.0002,
1482
+ "loss": 0.0028,
1483
+ "step": 235
1484
+ },
1485
+ {
1486
+ "epoch": 8.43,
1487
+ "learning_rate": 0.0002,
1488
+ "loss": 0.0027,
1489
+ "step": 236
1490
+ },
1491
+ {
1492
+ "epoch": 8.46,
1493
+ "learning_rate": 0.0002,
1494
+ "loss": 0.0034,
1495
+ "step": 237
1496
+ },
1497
+ {
1498
+ "epoch": 8.5,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 0.002,
1501
+ "step": 238
1502
+ },
1503
+ {
1504
+ "epoch": 8.54,
1505
+ "learning_rate": 0.0002,
1506
+ "loss": 0.0035,
1507
+ "step": 239
1508
+ },
1509
+ {
1510
+ "epoch": 8.57,
1511
+ "learning_rate": 0.0002,
1512
+ "loss": 0.0076,
1513
+ "step": 240
1514
+ },
1515
+ {
1516
+ "epoch": 8.61,
1517
+ "learning_rate": 0.0002,
1518
+ "loss": 0.0042,
1519
+ "step": 241
1520
+ },
1521
+ {
1522
+ "epoch": 8.64,
1523
+ "learning_rate": 0.0002,
1524
+ "loss": 0.0035,
1525
+ "step": 242
1526
+ },
1527
+ {
1528
+ "epoch": 8.68,
1529
+ "learning_rate": 0.0002,
1530
+ "loss": 0.0044,
1531
+ "step": 243
1532
+ },
1533
+ {
1534
+ "epoch": 8.71,
1535
+ "learning_rate": 0.0002,
1536
+ "loss": 0.0054,
1537
+ "step": 244
1538
+ },
1539
+ {
1540
+ "epoch": 8.75,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 0.0025,
1543
+ "step": 245
1544
+ },
1545
+ {
1546
+ "epoch": 8.79,
1547
+ "learning_rate": 0.0002,
1548
+ "loss": 0.0013,
1549
+ "step": 246
1550
+ },
1551
+ {
1552
+ "epoch": 8.82,
1553
+ "learning_rate": 0.0002,
1554
+ "loss": 0.0025,
1555
+ "step": 247
1556
+ },
1557
+ {
1558
+ "epoch": 8.86,
1559
+ "learning_rate": 0.0002,
1560
+ "loss": 0.0013,
1561
+ "step": 248
1562
+ },
1563
+ {
1564
+ "epoch": 8.89,
1565
+ "learning_rate": 0.0002,
1566
+ "loss": 0.0015,
1567
+ "step": 249
1568
+ },
1569
+ {
1570
+ "epoch": 8.93,
1571
+ "learning_rate": 0.0002,
1572
+ "loss": 0.002,
1573
+ "step": 250
1574
+ },
1575
+ {
1576
+ "epoch": 8.96,
1577
+ "learning_rate": 0.0002,
1578
+ "loss": 0.0025,
1579
+ "step": 251
1580
+ },
1581
+ {
1582
+ "epoch": 9.0,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 0.0015,
1585
+ "step": 252
1586
+ },
1587
+ {
1588
+ "epoch": 9.0,
1589
+ "eval_loss": 0.004076390527188778,
1590
+ "eval_runtime": 55.2102,
1591
+ "eval_samples_per_second": 15.704,
1592
+ "eval_steps_per_second": 0.507,
1593
+ "step": 252
1594
+ },
1595
+ {
1596
+ "epoch": 9.04,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 0.0015,
1599
+ "step": 253
1600
+ },
1601
+ {
1602
+ "epoch": 9.07,
1603
+ "learning_rate": 0.0002,
1604
+ "loss": 0.0029,
1605
+ "step": 254
1606
+ },
1607
+ {
1608
+ "epoch": 9.11,
1609
+ "learning_rate": 0.0002,
1610
+ "loss": 0.0014,
1611
+ "step": 255
1612
+ },
1613
+ {
1614
+ "epoch": 9.14,
1615
+ "learning_rate": 0.0002,
1616
+ "loss": 0.0018,
1617
+ "step": 256
1618
+ },
1619
+ {
1620
+ "epoch": 9.18,
1621
+ "learning_rate": 0.0002,
1622
+ "loss": 0.0061,
1623
+ "step": 257
1624
+ },
1625
+ {
1626
+ "epoch": 9.21,
1627
+ "learning_rate": 0.0002,
1628
+ "loss": 0.003,
1629
+ "step": 258
1630
+ },
1631
+ {
1632
+ "epoch": 9.25,
1633
+ "learning_rate": 0.0002,
1634
+ "loss": 0.0016,
1635
+ "step": 259
1636
+ },
1637
+ {
1638
+ "epoch": 9.29,
1639
+ "learning_rate": 0.0002,
1640
+ "loss": 0.0014,
1641
+ "step": 260
1642
+ },
1643
+ {
1644
+ "epoch": 9.32,
1645
+ "learning_rate": 0.0002,
1646
+ "loss": 0.0034,
1647
+ "step": 261
1648
+ },
1649
+ {
1650
+ "epoch": 9.36,
1651
+ "learning_rate": 0.0002,
1652
+ "loss": 0.0008,
1653
+ "step": 262
1654
+ },
1655
+ {
1656
+ "epoch": 9.39,
1657
+ "learning_rate": 0.0002,
1658
+ "loss": 0.0049,
1659
+ "step": 263
1660
+ },
1661
+ {
1662
+ "epoch": 9.43,
1663
+ "learning_rate": 0.0002,
1664
+ "loss": 0.0012,
1665
+ "step": 264
1666
+ },
1667
+ {
1668
+ "epoch": 9.46,
1669
+ "learning_rate": 0.0002,
1670
+ "loss": 0.0012,
1671
+ "step": 265
1672
+ },
1673
+ {
1674
+ "epoch": 9.5,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 0.0012,
1677
+ "step": 266
1678
+ },
1679
+ {
1680
+ "epoch": 9.54,
1681
+ "learning_rate": 0.0002,
1682
+ "loss": 0.0021,
1683
+ "step": 267
1684
+ },
1685
+ {
1686
+ "epoch": 9.57,
1687
+ "learning_rate": 0.0002,
1688
+ "loss": 0.0065,
1689
+ "step": 268
1690
+ },
1691
+ {
1692
+ "epoch": 9.61,
1693
+ "learning_rate": 0.0002,
1694
+ "loss": 0.0007,
1695
+ "step": 269
1696
+ },
1697
+ {
1698
+ "epoch": 9.64,
1699
+ "learning_rate": 0.0002,
1700
+ "loss": 0.0032,
1701
+ "step": 270
1702
+ },
1703
+ {
1704
+ "epoch": 9.68,
1705
+ "learning_rate": 0.0002,
1706
+ "loss": 0.0014,
1707
+ "step": 271
1708
+ },
1709
+ {
1710
+ "epoch": 9.71,
1711
+ "learning_rate": 0.0002,
1712
+ "loss": 0.0035,
1713
+ "step": 272
1714
+ },
1715
+ {
1716
+ "epoch": 9.75,
1717
+ "learning_rate": 0.0002,
1718
+ "loss": 0.0015,
1719
+ "step": 273
1720
+ },
1721
+ {
1722
+ "epoch": 9.79,
1723
+ "learning_rate": 0.0002,
1724
+ "loss": 0.0012,
1725
+ "step": 274
1726
+ },
1727
+ {
1728
+ "epoch": 9.82,
1729
+ "learning_rate": 0.0002,
1730
+ "loss": 0.0016,
1731
+ "step": 275
1732
+ },
1733
+ {
1734
+ "epoch": 9.86,
1735
+ "learning_rate": 0.0002,
1736
+ "loss": 0.0021,
1737
+ "step": 276
1738
+ },
1739
+ {
1740
+ "epoch": 9.89,
1741
+ "learning_rate": 0.0002,
1742
+ "loss": 0.0023,
1743
+ "step": 277
1744
+ },
1745
+ {
1746
+ "epoch": 9.93,
1747
+ "learning_rate": 0.0002,
1748
+ "loss": 0.0044,
1749
+ "step": 278
1750
+ },
1751
+ {
1752
+ "epoch": 9.96,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 0.001,
1755
+ "step": 279
1756
+ },
1757
+ {
1758
+ "epoch": 10.0,
1759
+ "learning_rate": 0.0002,
1760
+ "loss": 0.0015,
1761
+ "step": 280
1762
+ },
1763
+ {
1764
+ "epoch": 10.0,
1765
+ "eval_loss": 0.0016192951006814837,
1766
+ "eval_runtime": 55.2675,
1767
+ "eval_samples_per_second": 15.687,
1768
+ "eval_steps_per_second": 0.507,
1769
+ "step": 280
1770
+ },
1771
+ {
1772
+ "epoch": 10.0,
1773
+ "step": 280,
1774
+ "total_flos": 8.284116092306063e+17,
1775
+ "train_loss": 0.09805020090986676,
1776
+ "train_runtime": 3259.3787,
1777
+ "train_samples_per_second": 2.66,
1778
+ "train_steps_per_second": 0.086
1779
+ }
1780
+ ],
1781
+ "logging_steps": 1.0,
1782
+ "max_steps": 280,
1783
+ "num_input_tokens_seen": 0,
1784
+ "num_train_epochs": 10,
1785
+ "save_steps": 50000,
1786
+ "total_flos": 8.284116092306063e+17,
1787
+ "train_batch_size": 4,
1788
+ "trial_name": null,
1789
+ "trial_params": null
1790
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:22a2a32e736bb5f2e29fed598b953a6e6dc155f56f2b08b113e70284a621587d
3
- size 6776
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ee33646e54e626cfd513e17c021e6143b27b728c7a42f112b863c919f3a680
3
+ size 6840