--- license: apache-2.0 base_model: emilstabil/DanSumT5-baseV_38821V_41166 tags: - generated_from_trainer metrics: - rouge model-index: - name: DanSumT5-baseV_38821V_41166V_66047 results: [] --- # DanSumT5-baseV_38821V_41166V_66047 This model is a fine-tuned version of [emilstabil/DanSumT5-baseV_38821V_41166](https://huggingface.co/emilstabil/DanSumT5-baseV_38821V_41166) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1990 - Rouge1: 36.0404 - Rouge2: 12.6764 - Rougel: 22.071 - Rougelsum: 28.8826 - Gen Len: 125.7597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 232 | 2.1564 | 34.9765 | 12.317 | 22.0495 | 28.0706 | 126.1974 | | No log | 2.0 | 465 | 2.1556 | 35.1549 | 12.0372 | 21.909 | 28.1749 | 126.4721 | | 1.8468 | 3.0 | 697 | 2.1567 | 35.5068 | 12.2877 | 22.3354 | 28.495 | 126.0987 | | 1.8468 | 4.0 | 930 | 2.1524 | 35.5106 | 12.2834 | 22.0562 | 28.154 | 126.3863 | | 1.7638 | 5.0 | 1162 | 2.1675 | 35.4676 | 12.5524 | 22.5308 | 28.6412 | 125.3648 | | 1.7638 | 6.0 | 1395 | 2.1637 | 35.4733 | 12.2594 | 22.1365 | 28.4636 | 125.8884 | | 1.7082 | 7.0 | 1627 | 2.1771 | 35.6859 | 12.5372 | 22.4273 | 28.6912 | 125.4807 | | 1.7082 | 8.0 | 1860 | 2.1809 | 35.3696 | 12.3894 | 22.1246 | 28.1085 | 125.3734 | | 1.6599 | 9.0 | 2092 | 2.1828 | 35.2528 | 12.3629 | 22.1104 | 28.1709 | 126.2189 | | 1.6599 | 10.0 | 2325 | 2.1852 | 35.2601 | 12.1863 | 21.9823 | 28.1476 | 125.5365 | | 1.6125 | 11.0 | 2557 | 2.1903 | 35.1649 | 12.0801 | 21.883 | 27.82 | 125.3305 | | 1.6125 | 12.0 | 2790 | 2.1863 | 35.2341 | 12.0505 | 21.6645 | 28.1187 | 125.6953 | | 1.5957 | 13.0 | 3022 | 2.1921 | 35.5287 | 12.4581 | 22.0277 | 28.6527 | 125.97 | | 1.5957 | 14.0 | 3255 | 2.2085 | 35.7979 | 12.3305 | 22.0783 | 28.6627 | 125.412 | | 1.5957 | 15.0 | 3487 | 2.1962 | 35.7095 | 12.5406 | 21.81 | 28.299 | 126.3133 | | 1.5708 | 16.0 | 3720 | 2.1932 | 35.5116 | 12.3365 | 22.0461 | 28.4349 | 125.9614 | | 1.5708 | 17.0 | 3952 | 2.1985 | 35.3852 | 12.3385 | 21.9544 | 28.3238 | 125.4034 | | 1.5644 | 18.0 | 4185 | 2.1987 | 35.4105 | 12.2686 | 22.0002 | 28.287 | 125.073 | | 1.5644 | 19.0 | 4417 | 2.1996 | 35.7954 | 12.5156 | 22.198 | 28.5893 | 124.9099 | | 1.5446 | 19.96 | 4640 | 2.1990 | 36.0404 | 12.6764 | 22.071 | 28.8826 | 125.7597 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0 - Datasets 2.12.0 - Tokenizers 0.13.3