update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- conll2003
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: hmBERT-CoNLL-cp1
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: conll2003
|
20 |
+
type: conll2003
|
21 |
+
args: conll2003
|
22 |
+
metrics:
|
23 |
+
- name: Precision
|
24 |
+
type: precision
|
25 |
+
value: 0.8683215518658557
|
26 |
+
- name: Recall
|
27 |
+
type: recall
|
28 |
+
value: 0.8889262874453047
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.8785031185031185
|
32 |
+
- name: Accuracy
|
33 |
+
type: accuracy
|
34 |
+
value: 0.9809781550562673
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# hmBERT-CoNLL-cp1
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [dbmdz/bert-base-historic-multilingual-cased](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) on the conll2003 dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.0713
|
45 |
+
- Precision: 0.8683
|
46 |
+
- Recall: 0.8889
|
47 |
+
- F1: 0.8785
|
48 |
+
- Accuracy: 0.9810
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 5e-05
|
68 |
+
- train_batch_size: 32
|
69 |
+
- eval_batch_size: 32
|
70 |
+
- seed: 42
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- num_epochs: 1
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| No log | 0.06 | 25 | 0.4115 | 0.3593 | 0.3708 | 0.3649 | 0.9002 |
|
80 |
+
| No log | 0.11 | 50 | 0.2263 | 0.6360 | 0.6898 | 0.6618 | 0.9456 |
|
81 |
+
| No log | 0.17 | 75 | 0.1660 | 0.7250 | 0.7582 | 0.7412 | 0.9564 |
|
82 |
+
| No log | 0.23 | 100 | 0.1520 | 0.7432 | 0.7775 | 0.7600 | 0.9597 |
|
83 |
+
| No log | 0.28 | 125 | 0.1343 | 0.7683 | 0.8103 | 0.7888 | 0.9645 |
|
84 |
+
| No log | 0.34 | 150 | 0.1252 | 0.7973 | 0.8230 | 0.8099 | 0.9691 |
|
85 |
+
| No log | 0.4 | 175 | 0.1021 | 0.8118 | 0.8398 | 0.8255 | 0.9724 |
|
86 |
+
| No log | 0.46 | 200 | 0.1056 | 0.8153 | 0.8411 | 0.8280 | 0.9727 |
|
87 |
+
| No log | 0.51 | 225 | 0.0872 | 0.8331 | 0.8612 | 0.8469 | 0.9755 |
|
88 |
+
| No log | 0.57 | 250 | 0.1055 | 0.8226 | 0.8418 | 0.8321 | 0.9725 |
|
89 |
+
| No log | 0.63 | 275 | 0.0921 | 0.8605 | 0.8640 | 0.8623 | 0.9767 |
|
90 |
+
| No log | 0.68 | 300 | 0.0824 | 0.8600 | 0.8787 | 0.8692 | 0.9788 |
|
91 |
+
| No log | 0.74 | 325 | 0.0834 | 0.8530 | 0.8771 | 0.8649 | 0.9787 |
|
92 |
+
| No log | 0.8 | 350 | 0.0758 | 0.8646 | 0.8876 | 0.8759 | 0.9800 |
|
93 |
+
| No log | 0.85 | 375 | 0.0727 | 0.8705 | 0.8866 | 0.8784 | 0.9810 |
|
94 |
+
| No log | 0.91 | 400 | 0.0734 | 0.8717 | 0.8899 | 0.8807 | 0.9811 |
|
95 |
+
| No log | 0.97 | 425 | 0.0713 | 0.8683 | 0.8889 | 0.8785 | 0.9810 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.20.1
|
101 |
+
- Pytorch 1.12.0
|
102 |
+
- Datasets 2.4.0
|
103 |
+
- Tokenizers 0.12.1
|