File size: 4,420 Bytes
16456f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from torch import nn

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helpers


def pair(t):
    return t if isinstance(t, tuple) else (t, t)


# classes


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.0):
        super().__init__()
        self.net = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head**-0.5

        self.norm = nn.LayerNorm(dim)

        self.attend = nn.Softmax(dim=-1)
        self.dropout = nn.Dropout(dropout)

        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

        self.to_out = (
            nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
            if project_out
            else nn.Identity()
        )

    def forward(self, x):
        x = self.norm(x)

        qkv = self.to_qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

        attn = self.attend(dots)
        attn = self.dropout(attn)

        out = torch.matmul(attn, v)
        out = rearrange(out, "b h n d -> b n (h d)")
        return self.to_out(out)


class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout),
                        FeedForward(dim, mlp_dim, dropout=dropout),
                    ]
                )
            )

    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x

        return self.norm(x)


class ViT(nn.Module):
    def __init__(
        self,
        *,
        image_size,
        patch_size,
        num_classes,
        dim,
        depth,
        heads,
        mlp_dim,
        pool="cls",
        channels=3,
        dim_head=64,
        dropout=0.01,
        emb_dropout=0.01,
    ):
        super().__init__()
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)

        assert image_height % patch_height == 0 and image_width % patch_width == 0, (
            "Image dimensions must be divisible by the patch size."
        )

        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim = channels * patch_height * patch_width
        assert pool in {"cls", "mean"}, (
            "pool type must be either cls (cls token) or mean (mean pooling)"
        )

        self.to_patch_embedding = nn.Sequential(
            Rearrange(
                "b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
                p1=patch_height,
                p2=patch_width,
            ),
            nn.LayerNorm(patch_dim),
            nn.Linear(patch_dim, dim),
            nn.LayerNorm(dim),
        )

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

        self.pool = pool
        self.to_latent = nn.Identity()

        self.mlp_head = nn.Linear(dim, num_classes)

    def forward(self, img):
        x = self.to_patch_embedding(img)
        b, n, _ = x.shape

        cls_tokens = repeat(self.cls_token, "1 1 d -> b 1 d", b=b)
        x = torch.cat((cls_tokens, x), dim=1)
        x += self.pos_embedding[:, : (n + 1)]
        x = self.dropout(x)

        x = self.transformer(x)

        x = x.mean(dim=1) if self.pool == "mean" else x[:, 0]

        x = self.to_latent(x)
        return self.mlp_head(x)