File size: 11,047 Bytes
cfc1504 16456f4 cfc1504 16456f4 cfc1504 16456f4 cfc1504 16456f4 cfc1504 16456f4 cfc1504 16456f4 cfc1504 d09d651 cfc1504 9e0c113 cfc1504 16456f4 d09d651 16456f4 cfc1504 16456f4 cfc1504 16456f4 cfc1504 16456f4 cfc1504 16456f4 cfc1504 d09d651 cfc1504 d09d651 cfc1504 d09d651 cfc1504 d09d651 cfc1504 16456f4 d09d651 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# %%
import random
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import ReduceLROnPlateau
from PIL import Image
from torch.utils.data import ConcatDataset, DataLoader, Dataset
from torchvision.datasets import DatasetFolder
from tqdm import tqdm
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)
folder = "./datasets"
NUM_CLASSES = 14
train_tfm = transforms.Compose(
[
# Resize the image to a fixed shape (height = width = 256)
transforms.Resize((224, 224)),
transforms.Lambda(lambda x: x.convert("RGB")),
# Random horizontal flip to increase robustness to object orientation
transforms.RandomHorizontalFlip(),
# Random rotation, a common transformation to handle rotated images
transforms.RandomRotation(
20
), # Rotate image by a random angle between -20 and 20 degrees
# Random cropping to simulate random scene zoom
transforms.RandomResizedCrop(
224, scale=(0.8, 1.0)
), # Crop and resize to 224x224
# Random color jitter to make the model robust to lighting changes
# transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
# Random affine transformation (translation, scaling, rotation)
# transforms.RandomAffine(degrees=10, translate=(0.1, 0.1), scale=(0.8, 1.2)),
# Convert to tensor
transforms.ToTensor(),
# Normalize the image with mean and standard deviation for better convergence
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
test_tfm = transforms.Compose(
[
# Resize to the fixed size
transforms.Resize((224, 224)),
transforms.Lambda(lambda x: x.convert("RGB")),
# Convert to tensor
transforms.ToTensor(),
# Normalize the image with mean and standard deviation (same as in training)
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
def get_dataset():
train_set = DatasetFolder(
folder + "/train/labeled",
loader=lambda x: Image.open(x),
extensions="jpg",
# transform=train_tfm,
)
valid_set = DatasetFolder(
folder + "/val",
loader=lambda x: Image.open(x),
extensions="jpg",
transform=test_tfm,
)
unlabeled_set = DatasetFolder(
folder + "/train/unlabeled",
loader=lambda x: Image.open(x),
extensions="jpg",
# transform=train_tfm,
)
test_set = DatasetFolder(
folder + "/test",
loader=lambda x: Image.open(x),
extensions="jpg",
transform=test_tfm,
)
return train_set, valid_set, unlabeled_set, test_set
def train_collate_fn(batch):
data, labels = zip(*batch)
# data = torch.stack(data)
labels = torch.tensor(labels)
return data, labels
def test_collate_fn(batch):
data, labels = zip(*batch)
data = torch.stack(data)
labels = torch.tensor(labels)
return data, labels
from utils import CustomDataset
def update_dataset(
train_set, unlabeled_set, model, threshold, batch_size=128, num_workers=8
) -> Dataset:
"""
This is the core function to generate pseudo-labels dataets using the given model.
inputs:
- train_set: The labeled training set
- unlabeled_set: The unlabeled dataset to be pseudo-labeled
- model: The trained model to generate pseudo-labels
- threshold: Confidence threshold for pseudo-labeling
- batch_size: Batch size for DataLoader
- num_workers: Number of workers for DataLoader
outputs:
- new_set: The updated dataset with pseudo-labels
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
# Make sure the model is in eval mode.
model.eval()
# Define softmax function.
softmax = nn.Softmax(dim=-1)
# Create a dataloader for the unlabeled data
unlabeled_loader = DataLoader(
unlabeled_set,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
collate_fn=train_collate_fn,
)
# List to store the most confident predictions
confident_samples = []
confident_labels = []
with torch.no_grad():
for batch_idx, (images, _) in enumerate(
tqdm(unlabeled_loader, desc="Generating pseudo-labels")
):
# Apply test transform to each image in the batch
new_images = torch.stack([test_tfm(img) for img in images])
# Forward pass through the model
outputs = model(new_images.to(device))
# Apply softmax to get probabilities
probabilities = softmax(outputs)
# Get the maximum probability and corresponding class for each sample
max_probs, pseudo_labels = torch.max(probabilities, dim=1)
# For each sample in the batch, check confidence threshold
for i, (prob, label) in enumerate(zip(max_probs, pseudo_labels)):
# If the prediction is confident enough, add to confident set
if prob.item() > threshold:
# Get the actual index in the unlabeled_set
idx = batch_idx * batch_size + i
if idx < len(unlabeled_set):
img, _ = unlabeled_set[idx]
confident_samples.append(img)
confident_labels.append(int(label.cpu()))
# Create new dataset from the confident predictions
if confident_samples:
pseudo_set = CustomDataset(images=confident_samples, labels=confident_labels)
# Combine with existing labeled data
new_set = ConcatDataset([train_set, pseudo_set])
print(f"Added {len(confident_samples)} pseudo-labeled samples to training set")
else:
print("No confident pseudo-labels found.")
new_set = train_set
return new_set
# %%
from models import * # noqa: F403
from torch import optim
# "cuda" only when GPUs are available.
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# Initialize a model, and put it on the device specified.
# model = Classifier().to(device)
# model = VGG16Classifier(num_classes=NUM_CLASSES).to(device)
# model = ResNet50Classifier(num_classes=NUM_CLASSES).to(device)
model = ResNet101Classifier(num_classes=NUM_CLASSES).to(device)
# model = InceptionV3Classifier(num_classes=NUM_CLASSES).to(device)
# model = ViTLargeClassifier(num_classes=NUM_CLASSES).to(device)
# !!! ONLY USE THIS FOR RESUME TRAINING !!!
model.load_state_dict(torch.load("best_model.pth"))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-5, weight_decay=1e-5)
scheduler = ReduceLROnPlateau(
optimizer,
mode="min",
factor=0.1,
patience=2,
threshold=0.001,
threshold_mode="rel",
cooldown=0,
min_lr=0,
eps=1e-08,
)
# %%
# TRAINING
do_semi = True
batch_size = 128
num_workers = 8
train_set, valid_set, unlabeled_set, test_set = get_dataset()
train_loader = DataLoader(
dataset=train_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
collate_fn=train_collate_fn,
)
valid_loader = DataLoader(
dataset=valid_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
collate_fn=test_collate_fn,
)
test_loader = DataLoader(
dataset=test_set,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
collate_fn=test_collate_fn,
)
best_valid_loss = float("inf")
start_epoch = 100
epochs = 100
threshold = 0.8
early_stop = False
for epoch in range(start_epoch, epochs):
if do_semi and epoch > epochs // 4 and epoch % 2 == 0:
new_set = update_dataset(
train_set=train_set,
unlabeled_set=unlabeled_set,
model=model,
threshold=threshold,
batch_size=batch_size,
num_workers=num_workers,
)
train_loader = DataLoader(
dataset=new_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
collate_fn=train_collate_fn,
)
# ---------- Training ----------
model.train()
train_loss = []
train_accs = []
for batch in tqdm(train_loader):
imgs, labels = batch
new_images = torch.stack([train_tfm(img) for img in imgs])
logits = model(new_images.to(device))
loss = criterion(logits, labels.to(device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()
train_loss.append(loss.item())
train_accs.append(acc)
train_loss = sum(train_loss) / len(train_loss)
train_acc = sum(train_accs) / len(train_accs)
print(
f"[ Train | {epoch + 1:03d}/{epochs:03d} ] loss = {train_loss:.5f}, acc = {train_acc:.5f}"
)
# ---------- Validation ----------
model.eval()
valid_loss = []
valid_accs = []
for batch in tqdm(valid_loader):
imgs, labels = batch
with torch.no_grad():
logits = model(imgs.to(device))
loss = criterion(logits, labels.to(device))
acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()
valid_loss.append(loss.item())
valid_accs.append(acc)
valid_loss = sum(valid_loss) / len(valid_loss)
valid_acc = sum(valid_accs) / len(valid_accs)
print(
f"[ Valid | {epoch + 1:03d}/{epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}"
)
scheduler.step(metrics=valid_loss)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), "best_model.pth")
print(f"Model saved with loss: {valid_loss:.5f}, acc: {valid_acc:.5f}")
elif early_stop:
if epoch > epochs // 2 and valid_loss > best_valid_loss * 1.2:
print("Early stopping")
break
# %%
# torch.save(model.state_dict(), "best_model.pth")
# %%
# LOAD BEST MODEL
model.load_state_dict(torch.load("best_model.pth"))
model.eval()
# %%
# TEST
model.eval()
# Initialize a list to store the predictions.
predictions = []
# Iterate the testing set by batches.
for batch in tqdm(test_loader):
imgs, labels = batch
with torch.no_grad():
logits = model(imgs.to(device))
predictions.extend(logits.argmax(dim=-1).cpu().numpy().tolist())
# %%
# Save predictions into the file.
with open("predict.csv", "w") as f:
# The first row must be "Id, Category"
f.write("Id,Category\n")
# For the rest of the rows, each image id corresponds to a predicted class.
for i, pred in enumerate(predictions):
f.write(f"{i},{pred}\n")
print("Predictions saved to predict.csv")
|