SDSC6001_HW3 / models /VGG16Classifier.py
MingLi
First model version
87e3471
import os
from torchvision.models import vgg16
import torch.nn.init as init
import torch.nn as nn
import torch
class VGG16Classifier(nn.Module):
def __init__(self, num_classes: int = 14):
super(VGG16Classifier, self).__init__()
self.vgg16 = vgg16(pretrained=False)
# Replace the classifier layer
num_features = self.vgg16.classifier[6].in_features
self.vgg16.classifier[6] = nn.Linear(num_features, num_classes)
# εˆε§‹εŒ–ζƒι‡
if not self.load():
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight)
if m.bias is not None:
init.zeros_(m.bias)
def forward(self, x):
x = self.vgg16(x)
return x
def load(self, filename: str = None) -> bool:
if filename is None:
current_work_dir = os.path.dirname(__file__)
filename = os.path.join(current_work_dir, "best_pth", "VGG16Classifier.pth")
if not os.path.exists(filename):
print("Model file does not exist.")
return False
self.load_state_dict(torch.load(filename))
print("Model loaded successfully.")
return True