import os from torchvision.models.inception import inception_v3 import torch.nn.init as init import torch.nn as nn import torch class InceptionV3Classifier(nn.Module): def __init__(self, num_classes: int = 14): super(InceptionV3Classifier, self).__init__() self.inception = inception_v3( pretrained=False, num_classes=num_classes, aux_logits=False ) # Initialize weights if not loading from a file if not self._load(): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): init.ones_(m.weight) init.zeros_(m.bias) elif isinstance(m, nn.Linear): init.xavier_normal_(m.weight) if m.bias is not None: init.zeros_(m.bias) def forward(self, x): x = self.inception(x) return x def _load(self, filename: str = None) -> bool: if filename is None: current_work_dir = os.path.dirname(__file__) filename = os.path.join( current_work_dir, "best_pth", "InceptionV3Classifier.pth" ) if not os.path.exists(filename): print("Model file does not exist.") return False self.load_state_dict(torch.load(filename)) print("Model loaded successfully.") return True