import os from torchvision.models import resnet50, resnet101,ResNet101_Weights from torchvision.models.resnet import Bottleneck, BasicBlock import torch.nn.init as init import torch.nn as nn import torch class ResNet50Classifier(nn.Module): def __init__(self, num_classes: int = 14): super(ResNet50Classifier, self).__init__() self.resnet = resnet50(pretrained=False, num_classes=num_classes) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if not self._load(): for m in self.modules(): # print(m) if isinstance(m, Bottleneck) and m.bn3.weight is not None: nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock) and m.bn2.weight is not None: nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] elif isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: init.zeros_(m.bias) elif isinstance(m, nn.Linear): init.xavier_normal_(m.weight) if m.bias is not None: init.zeros_(m.bias) def forward(self, x): x = self.resnet(x) return x def _load(self, filename: str = None) -> bool: if filename is None: current_work_dir = os.path.dirname(__file__) filename = os.path.join(current_work_dir, "best_pth", "ResNet50Classifier.pth") if not os.path.exists(filename): print("Model file does not exist.") return False self.load_state_dict(torch.load(filename)) print("Model loaded successfully.") return True class ResNet101Classifier(nn.Module): def __init__(self, num_classes: int = 14): super(ResNet101Classifier, self).__init__() # self.resnet = resnet101(pretrained=False, num_classes=num_classes) # ======== ONLY USE THIS FOR TESTING ======== self.resnet = resnet101(weights=ResNet101_Weights.DEFAULT) # Replace the final fully connected layer with one that outputs the desired number of classes in_features = self.resnet.fc.in_features self.resnet.fc = nn.Linear(in_features, num_classes) # ======== ONLY USE THIS FOR TESTING ======== # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 # if not self._load(): # for m in self.modules(): # # print(m) # if isinstance(m, Bottleneck) and m.bn3.weight is not None: # nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] # elif isinstance(m, BasicBlock) and m.bn2.weight is not None: # nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] # elif isinstance(m, nn.Conv2d): # init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") # if m.bias is not None: # init.zeros_(m.bias) # elif isinstance(m, nn.Linear): # init.xavier_normal_(m.weight) # if m.bias is not None: # init.zeros_(m.bias) def forward(self, x): x = self.resnet(x) return x def _load(self, filename: str = None) -> bool: return False if filename is None: current_work_dir = os.path.dirname(__file__) filename = os.path.join(current_work_dir, "best_pth", "ResNet101Classifier.pth") if not os.path.exists(filename): print("Model file does not exist.") return False self.load_state_dict(torch.load(filename)) print("Model loaded successfully.") return True