File size: 19,315 Bytes
b321188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "46689feb",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "bb5f4eed",
   "metadata": {},
   "outputs": [],
   "source": [
    "matedata = pd.read_json(\"meta_Electronics.json.gz\", lines=True, compression=\"gzip\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fbfd4fdf",
   "metadata": {},
   "outputs": [],
   "source": [
    "matedata.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c28a3490",
   "metadata": {},
   "outputs": [],
   "source": [
    "metadata_asin_image = matedata[[\"asin\", \"imageURLHighRes\"]]\n",
    "metadata_asin_image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ae58599",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Convert the list to the image url\n",
    "metadata_asin_image.loc[:, \"url\"] = metadata_asin_image[\"imageURLHighRes\"].apply(\n",
    "    lambda x: x[0] if isinstance(x, list) and len(x) > 0 else None\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7dcfbafb",
   "metadata": {},
   "outputs": [],
   "source": [
    "metadata_asin_image[[\"asin\", \"url\"]].to_csv(\n",
    "    \"metadata_asin_image.csv\",\n",
    "    index=False,\n",
    "    mode=\"w\",\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4010aa2c",
   "metadata": {},
   "source": [
    "# Start"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13615a01",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "metadata_asin_image=pd.read_csv(\"metadata_asin_image.csv\")\n",
    "metadata_asin_image.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2295fcf0",
   "metadata": {},
   "outputs": [],
   "source": [
    "metadata_asin_image.iloc[0]['asin']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "70068796",
   "metadata": {},
   "outputs": [],
   "source": [
    "import validators\n",
    "import requests\n",
    "import os\n",
    "import time\n",
    "\n",
    "for _, line in metadata_asin_image.iterrows():\n",
    "    asin = line[\"asin\"]\n",
    "    image_url = line[\"url\"]\n",
    "\n",
    "    if not validators.url(image_url):\n",
    "        print(f\"Invalid Image URL for ASIN: {asin}, URL: {image_url}\")\n",
    "        continue\n",
    "\n",
    "    # Download the image to \"./imgs/\" directory\n",
    "    image_path = f\"./imgs/{asin}.jpg\"\n",
    "    # Check if the image already exists\n",
    "    if os.path.exists(image_path):\n",
    "        print(f\"Image already exists: {image_path}\")\n",
    "        continue\n",
    "    \n",
    "    # Add retry logic for downloading images\n",
    "    max_retries = 3\n",
    "    retry_delay = 1  # seconds\n",
    "    for attempt in range(max_retries):\n",
    "        try:\n",
    "            time.sleep(0.05)\n",
    "            response = requests.get(image_url, timeout=10)\n",
    "            response.raise_for_status()  # Raise exception for HTTP errors\n",
    "            with open(image_path, \"wb\") as f:\n",
    "                f.write(response.content)\n",
    "            break\n",
    "        except (requests.exceptions.RequestException, IOError) as e:\n",
    "            if attempt < max_retries - 1:\n",
    "                print(\n",
    "                    f\"Error downloading image from {image_url}: {e}. Retrying in {retry_delay}s... (Attempt {attempt + 1}/{max_retries})\"\n",
    "                )\n",
    "                time.sleep(retry_delay)\n",
    "                retry_delay *= 2  # Exponential backoff\n",
    "            else:\n",
    "                print(f\"Failed to download image after {max_retries} attempts: {e}\")\n",
    "                continue"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "33e2bd83",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import asyncio\n",
    "import random\n",
    "import aiohttp\n",
    "import validators\n",
    "import pandas as pd\n",
    "from tqdm import tqdm  # import the progress bar package\n",
    "\n",
    "async def download_image(line, session, sema):\n",
    "    \"\"\"\n",
    "    异步下载单个图片,并保存到指定路径中,同时加入重试机制。\n",
    "    \"\"\"\n",
    "    async with sema:\n",
    "        asin = line[\"asin\"]\n",
    "        image_url = line[\"url\"]\n",
    "\n",
    "        # 校验 URL 是否有效\n",
    "        if not validators.url(image_url):\n",
    "            print(f\"Invalid Image URL for ASIN: {asin}, URL: {image_url}\")\n",
    "            return\n",
    "\n",
    "        # 构造图片保存路径\n",
    "        image_path = f\"./imgs/{asin}.jpg\"\n",
    "        if os.path.exists(image_path):\n",
    "            print(f\"Image already exists: {image_path}\")\n",
    "            return\n",
    "\n",
    "        max_retries = 3\n",
    "        retry_delay = 1  # 重试延时(秒)\n",
    "\n",
    "        for attempt in range(max_retries):\n",
    "            try:\n",
    "                # 添加一个短暂的异步延时\n",
    "                await asyncio.sleep(0.05 * random.random())\n",
    "                # 发起 GET 请求下载图片\n",
    "                async with session.get(image_url, timeout=10) as response:\n",
    "                    if response.status != 200:\n",
    "                        raise aiohttp.ClientResponseError(\n",
    "                            request_info=response.request_info,\n",
    "                            history=response.history,\n",
    "                            status=response.status,\n",
    "                            message=\"Non 200 response\",\n",
    "                            headers=response.headers\n",
    "                        )\n",
    "                    content = await response.read()\n",
    "                    with open(image_path, \"wb\") as f:\n",
    "                        f.write(content)\n",
    "                    print(f\"Downloaded image for ASIN: {asin}\")\n",
    "                    break\n",
    "            except Exception as e:\n",
    "                if attempt < max_retries - 1:\n",
    "                    print(f\"Error downloading image from {image_url}: {e}. Retrying in {retry_delay}s... (Attempt {attempt + 1}/{max_retries})\")\n",
    "                    await asyncio.sleep(retry_delay)\n",
    "                    retry_delay *= 2\n",
    "                else:\n",
    "                    print(f\"Failed to download image after {max_retries} attempts: {e}\")\n",
    "\n",
    "async def main():\n",
    "    sema = asyncio.Semaphore(10)\n",
    "    async with aiohttp.ClientSession() as session:\n",
    "        tasks = [download_image(line, session, sema) for _, line in metadata_asin_image.iterrows()]\n",
    "        # Use asyncio.as_completed to update the progress bar each time a task completes.\n",
    "        for coro in tqdm(asyncio.as_completed(tasks), total=len(tasks), desc=\"Downloading images\"):\n",
    "            await coro\n",
    "\n",
    "await main()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "575f4549",
   "metadata": {},
   "source": [
    "# Handle"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1527a782",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from PIL import Image\n",
    "import timm\n",
    "from sklearn.preprocessing import normalize\n",
    "from timm.data import resolve_data_config\n",
    "from timm.data.transforms_factory import create_transform\n",
    "import requests\n",
    "from io import BytesIO\n",
    "import numpy as np\n",
    "import time\n",
    "import os\n",
    "\n",
    "\n",
    "class FeatureExtractor:\n",
    "    def __init__(self, modelname=\"vit_base_patch16_224\"):\n",
    "        # Load the pre-trained model\n",
    "        self.model = timm.create_model(\n",
    "            model_name=modelname, pretrained=True, num_classes=0, global_pool=\"avg\"\n",
    "        )\n",
    "        self.device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "        self.model = self.model.to(self.device)\n",
    "        self.model.eval()\n",
    "\n",
    "        # Get the input size required by the model\n",
    "        self.input_size = self.model.default_cfg[\"input_size\"]\n",
    "\n",
    "        config = resolve_data_config({}, model=modelname)\n",
    "        # Get the preprocessing function provided by TIMM for the model\n",
    "        self.preprocess = create_transform(**config)\n",
    "        print(f\"Model {modelname} loaded with input size: {self.input_size}\")\n",
    "\n",
    "    def __call__(self, imagepath):\n",
    "        # Preprocess the input image\n",
    "        assert isinstance(imagepath, str), \"Image path must be a string\"\n",
    "        assert len(imagepath) > 0, \"Image path cannot be empty\"\n",
    "\n",
    "        if not os.path.isfile(imagepath):\n",
    "            raise FileNotFoundError(f\"File not found: {imagepath}\")\n",
    "        \n",
    "        try:\n",
    "            # Open the image file\n",
    "            input_image = Image.open(imagepath).convert(\"RGB\")\n",
    "        except Exception as e:\n",
    "            raise IOError(f\"!!! Error opening image file {imagepath}: {e}\")\n",
    "        \n",
    "        input_image = Image.open(imagepath).convert(\"RGB\")\n",
    "\n",
    "        input_image = self.preprocess(input_image)\n",
    "\n",
    "        # Convert the image to a PyTorch tensor and add a batch dimension\n",
    "        input_tensor = input_image.unsqueeze(0)\n",
    "\n",
    "        with torch.no_grad():\n",
    "            forward_vector = self.model(input_tensor.to(self.device))\n",
    "        # Get the feature vector\n",
    "        # feature_vector = forward_vector.data.cpu().numpy()\n",
    "\n",
    "        # return feature_vector\n",
    "        return normalize(forward_vector.reshape(1, -1).cpu(), norm=\"l2\").flatten()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "33f9175f",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pymilvus import MilvusClient, DataType\n",
    "\n",
    "client = MilvusClient(uri=\"./Amazon_electronics.db\")\n",
    "# if client.has_collection(collection_name=\"image_embeddings\"):\n",
    "#     client.drop_collection(collection_name=\"image_embeddings\")\n",
    "schema = MilvusClient.create_schema()\n",
    "schema.add_field(field_name=\"asin\", datatype=DataType.VARCHAR, max_length=64, is_primary=True)\n",
    "schema.add_field(field_name=\"embedding\", datatype=DataType.FLOAT_VECTOR, dim=768)\n",
    "client.create_collection(collection_name=\"image_embeddings\", schema=schema)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b3751162",
   "metadata": {},
   "outputs": [],
   "source": [
    "# check image open is ok\n",
    "for _, line in metadata_asin_image.iterrows():\n",
    "    asin = line[\"asin\"]\n",
    "    image_path = f\"./imgs/{asin}.jpg\"\n",
    "\n",
    "    #try open image\n",
    "    try:\n",
    "        if os.path.exists(image_path):\n",
    "            Image.open(image_path).convert(\"RGB\")\n",
    "            continue\n",
    "    except Exception as e:\n",
    "        raise IOError(f\"!!! Error opening image file {image_path}: {e}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "20253eb0",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from concurrent.futures import ThreadPoolExecutor\n",
    "from tqdm import tqdm\n",
    "\n",
    "# 初始化特征提取器\n",
    "extractor = FeatureExtractor()\n",
    "\n",
    "\n",
    "def process_images(filepaths, batch_size=32):\n",
    "    \"\"\"\n",
    "    批量处理图片,充分利用 GPU 资源。\n",
    "    \"\"\"\n",
    "    for i in range(0, len(filepaths), batch_size):\n",
    "        batch = filepaths[i : i + batch_size]\n",
    "        data=[]\n",
    "        for filepath in batch:\n",
    "            asin = os.path.basename(filepath).split(\".\")[0]\n",
    "            image_embedding = extractor(filepath)\n",
    "            data.append({\n",
    "                \"asin\": asin,\n",
    "                \"embedding\": image_embedding\n",
    "            })\n",
    "        # 将数据插入到 Milvus 中\n",
    "        client.insert(collection_name=\"image_embeddings\", data=data)\n",
    "\n",
    "\n",
    "# 获取所有图片路径\n",
    "root = \"./imgs\"\n",
    "filepaths = [\n",
    "    os.path.join(dirpath, filename)\n",
    "    for dirpath, _, filenames in os.walk(root)\n",
    "    for filename in filenames\n",
    "    if filename.endswith(\".jpg\")\n",
    "]\n",
    "\n",
    "# 使用多线程处理图片\n",
    "chunks = [filepaths[i : i + 32] for i in range(0, len(filepaths), 32)]\n",
    "with ThreadPoolExecutor(max_workers=4) as executor:\n",
    "    list(\n",
    "        tqdm(\n",
    "            executor.map(process_images, chunks),\n",
    "            total=len(chunks),\n",
    "            desc=\"Processing images\",\n",
    "        )\n",
    "    )\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6bac1432",
   "metadata": {},
   "source": [
    "# Cal"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d76299a4",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pymilvus import MilvusClient, DataType\n",
    "from IPython.display import display\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa40682e",
   "metadata": {},
   "outputs": [],
   "source": [
    "client = MilvusClient(uri=\"./Amazon_electronics.db\")\n",
    "extractor = FeatureExtractor()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bbbd0987",
   "metadata": {},
   "outputs": [],
   "source": [
    "index_params = MilvusClient.prepare_index_params()\n",
    "\n",
    "index_params.add_index(\n",
    "    field_name=\"embedding\",\n",
    "    metric_type=\"COSINE\",\n",
    "    index_type=\"IVF_FLAT\",\n",
    "    index_name=\"embedding_index\",\n",
    "    params={\"nlist\": 128}\n",
    ")\n",
    "\n",
    "client.create_index(\n",
    "    collection_name=\"image_embeddings\",\n",
    "    index_params=index_params,\n",
    "    sync=False\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3b40d702",
   "metadata": {},
   "outputs": [],
   "source": [
    "res = client.list_indexes(\n",
    "    collection_name=\"image_embeddings\"\n",
    ")\n",
    "\n",
    "print(res)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "37d4f0e8",
   "metadata": {},
   "outputs": [],
   "source": [
    "query_image = \"imgs/0043396828.jpg\"\n",
    "display(Image.open(query_image))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "117f4a60",
   "metadata": {},
   "outputs": [],
   "source": [
    "results = client.search(\n",
    "    collection_name=\"image_embeddings\",\n",
    "    data=[extractor(query_image)],\n",
    "    output_fields=[\"asin\"],\n",
    "    search_params={\"metric_type\": \"COSINE\"},\n",
    "    limit=20,\n",
    ")\n",
    "\n",
    "for result in results[0]:\n",
    "    print(f\"ASIN: {result['entity'].get('asin')}, Score: {result['distance']}\")\n",
    "    # Display the image\n",
    "    display(Image.open(f\"./imgs/{result['entity'].get('asin')}.jpg\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "01d164f3",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pymilvus import MilvusClient\n",
    "import numpy as np\n",
    "\n",
    "client = MilvusClient(uri=\"./Amazon_electronics.db\")\n",
    "collection_name = \"image_embeddings\"\n",
    "\n",
    "# milvus_cache 用于缓存每个asin的embedding,避免重复查询\n",
    "milvus_cache = {}\n",
    "\n",
    "def get_embedding(asin, client, collection_name, milvus_cache):\n",
    "    \"\"\"\n",
    "    从缓存中获取或通过 Milvus 查询指定asin的embedding向量\n",
    "    \"\"\"\n",
    "    if asin in milvus_cache:\n",
    "        # 已缓存,则直接返回\n",
    "        return milvus_cache[asin]\n",
    "    \n",
    "    # 使用 Milvus 的 query 接口,按主键查询当前 asin 的记录\n",
    "    # 注意:根据你使用的 Milvus SDK,查询语法可能稍有不同,请参考官方文档\n",
    "    query_expr = f\"asin == '{asin}'\"\n",
    "    results = client.query(collection_name=collection_name, filter=query_expr, output_fields=[\"embedding\"])\n",
    "    \n",
    "    if results and len(results) > 0:\n",
    "        embedding = results[0][\"embedding\"]\n",
    "        milvus_cache[asin] = embedding  # 缓存起来\n",
    "        return embedding\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def cosine_similarity(vec1, vec2):\n",
    "    \"\"\"\n",
    "    计算两个向量之间的余弦相似度\n",
    "    \"\"\"\n",
    "    vec1 = np.array(vec1)\n",
    "    vec2 = np.array(vec2)\n",
    "    norm1 = np.linalg.norm(vec1)\n",
    "    norm2 = np.linalg.norm(vec2)\n",
    "    if norm1 == 0 or norm2 == 0:\n",
    "        return 0.0\n",
    "    return np.dot(vec1, vec2) / (norm1 * norm2)\n",
    "\n",
    "def get_asin_similarity(asin1, asin2, client, collection_name, milvus_cache):\n",
    "    \"\"\"\n",
    "    计算两个 asin 之间基于图片 embedding 的相似度:\n",
    "     1. 如果对应asin的向量存在于缓存中,直接使用;\n",
    "     2. 否则通过 Milvus 查询拿到 embedding 向量;\n",
    "     3. 使用余弦相似度计算两者的相似度。\n",
    "    \"\"\"\n",
    "    emb1 = get_embedding(asin1, client, collection_name, milvus_cache)\n",
    "    emb2 = get_embedding(asin2, client, collection_name, milvus_cache)\n",
    "    \n",
    "    if emb1 is None or emb2 is None:\n",
    "        print(f\"无法获取商品 {asin1 if emb1 is None else asin2} 的 embedding\")\n",
    "        return 0.0\n",
    "    return cosine_similarity(emb1, emb2)\n",
    "\n",
    "# 使用示例\n",
    "asin_a = \"059403390X\"   # 示例 asin\n",
    "asin_b = \"146476560X\"   # 示例 asin\n",
    "\n",
    "sim_score = get_asin_similarity(asin_a, asin_b, client, collection_name, milvus_cache)\n",
    "print(f\"商品 {asin_a} 和商品 {asin_b} 的图片相似度为: {sim_score:.4f}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv (3.12.3)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}