File size: 22,452 Bytes
9f13819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import inspect
import torch
import importlib
from torch import nn
from torch.nn import functional as F
import torch.optim.lr_scheduler as lrs
import pytorch_lightning as pl
from transformers import LlamaForCausalLM, LlamaTokenizer
import random
from pandas.core.frame import DataFrame
import os.path as op
import os
from optims import LinearWarmupCosineLRScheduler
import numpy as np
from .peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel, MoeLoraConfig, MoeLoraModel
import pickle
from .router.nlpr import LambdaLayer, ResidualBlock, GateFunction, NLPRecommendationRouter, build_router
# from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel
class MInterface(pl.LightningModule):
def __init__(self,
**kargs):
super().__init__()
self.save_hyperparameters()
self.load_llm(self.hparams.llm_path)
if self.hparams.router == 'share':
self.router = build_router()
self.load_rec_model(self.hparams.rec_model_path)
self.load_projector()
self.gradient_storage = {}
def forward(self, batch):
targets = batch["tokens"].input_ids.masked_fill(
batch["tokens"].input_ids == self.llama_tokenizer.pad_token_id, -100
) # [batch_size, max_len]
targets = targets.masked_fill((batch["tokens"].token_type_ids == 0)[:,1:], -100)
# targets = targets.masked_fill((batch["tokens"].token_type_ids == 0)[:,:], -100)
input_embeds, user_embeds = self.wrap_emb(batch)
if self.hparams.router == 'share':
gate_weights = self.router(user_embeds)
outputs = self.llama_model(
inputs_embeds=input_embeds,
attention_mask=batch["tokens"].attention_mask,
return_dict=True,
labels=targets,
use_cache=False,
user_embeds=user_embeds,
gate_weights=gate_weights
)
return outputs
outputs = self.llama_model(
inputs_embeds=input_embeds,
attention_mask=batch["tokens"].attention_mask,
return_dict=True,
labels=targets,
use_cache=False,
user_embeds=user_embeds
)
return outputs
def generate(self, batch,temperature=0.8,do_sample=False,num_beams=1,max_gen_length=64,min_gen_length=1,repetition_penalty=1.0,length_penalty=1.0, num_return_sequences=1):
input_embeds, user_embeds = self.wrap_emb(batch)
if self.hparams.router == 'share':
gate_weights = self.router(user_embeds)
generate_ids = self.llama_model.generate(
inputs_embeds=input_embeds,
attention_mask=batch["tokens"].attention_mask,
temperature=temperature,
do_sample=do_sample,
num_beams=num_beams,
max_new_tokens=max_gen_length,
min_new_tokens=min_gen_length,
pad_token_id=self.llama_tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_return_sequences,
user_embeds=user_embeds,
gate_weights = gate_weights
)
output_text=self.llama_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
outputs=[text.strip() for text in output_text]
return outputs
gate_weights = self.router(user_embeds)
generate_ids = self.llama_model.generate(
inputs_embeds=input_embeds,
attention_mask=batch["tokens"].attention_mask,
temperature=temperature,
do_sample=do_sample,
num_beams=num_beams,
max_new_tokens=max_gen_length,
min_new_tokens=min_gen_length,
pad_token_id=self.llama_tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_return_sequences,
user_embeds=user_embeds,
gate_weights = gate_weights
)
output_text=self.llama_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
outputs=[text.strip() for text in output_text]
return outputs
def capture_and_store_gradients(self):
for name, param in self.llama_model.named_parameters():
if "lora" in name and param.grad is not None:
if name not in self.gradient_storage:
self.gradient_storage[name] = []
self.gradient_storage[name].append(param.grad.clone().detach())
if self.trainer.global_step % 10 == 0:
self.save_gradients_to_file()
def save_gradients_to_file(self):
directory = self.hparams.capture_dir
if not os.path.exists(directory):
os.makedirs(directory)
file_path = os.path.join(directory, f'gradients_step_{self.trainer.global_step}.pkl')
with open(file_path, 'wb') as f:
pickle.dump(self.gradient_storage, f)
self.gradient_storage = {}
def training_step(self, batch, batch_idx):
if self.scheduler:
self.scheduler.step(self.trainer.global_step, self.current_epoch, self.trainer.max_steps)
if batch["flag"]:
for name, param in self.projector.named_parameters():
param.requires_grad = False
else:
for name, param in self.projector.named_parameters():
param.requires_grad = True
out = self(batch)
loss = self.configure_loss(out)
self.log('loss', loss, on_step=True, on_epoch=True, prog_bar=True)
self.log('lr', self.scheduler.optimizer.param_groups[0]['lr'], on_step=True, on_epoch=True, prog_bar=True)
self.log('global_step_num', self.trainer.global_step, on_step=True, on_epoch=True, prog_bar=True)
return loss
def on_validation_epoch_start(self):
self.val_content={
"generate":[],
"real":[],
"cans":[],
}
@torch.no_grad()
def validation_step(self, batch, batch_idx):
generate_output = self.generate(batch)
output=[]
for i,generate in enumerate(generate_output):
real=batch['correct_answer'][i]
cans=batch['cans_name'][i]
generate=generate.strip().split("\n")[0]
output.append((generate,real,cans))
return output
def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
for generate,real,cans in outputs:
self.val_content["generate"].append(generate)
self.val_content["real"].append(real)
self.val_content["cans"].append(cans)
def on_validation_epoch_end(self):
df=DataFrame(self.val_content)
if not os.path.exists(self.hparams.output_dir):
os.makedirs(self.hparams.output_dir)
df.to_csv(op.join(self.hparams.output_dir, 'valid.csv'))
prediction_valid_ratio,hr=self.calculate_hr1(self.val_content)
metric=hr*prediction_valid_ratio
self.log('val_prediction_valid', prediction_valid_ratio, on_step=False, on_epoch=True, prog_bar=True)
self.log('val_hr', hr, on_step=False, on_epoch=True, prog_bar=True)
self.log('metric', metric, on_step=False, on_epoch=True, prog_bar=True)
def on_test_epoch_start(self):
self.test_content={
"generate":[],
"real":[],
"cans":[],
}
@torch.no_grad()
def test_step(self, batch, batch_idx):
generate_output = self.generate(batch)
output=[]
for i,generate in enumerate(generate_output):
real=batch['correct_answer'][i]
cans=batch['cans_name'][i]
generate=generate.strip().split("\n")[0]
output.append((generate,real,cans))
return output
def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
for generate,real,cans in outputs:
self.test_content["generate"].append(generate)
self.test_content["real"].append(real)
self.test_content["cans"].append(cans)
def on_test_epoch_end(self):
df=DataFrame(self.test_content)
if not os.path.exists(self.hparams.output_dir):
os.makedirs(self.hparams.output_dir)
df.to_csv(op.join(self.hparams.output_dir, 'test.csv'))
prediction_valid_ratio,hr=self.calculate_hr1(self.test_content)
metric=hr*prediction_valid_ratio
self.log('test_prediction_valid', prediction_valid_ratio, on_step=False, on_epoch=True, prog_bar=True)
self.log('test_hr', hr, on_step=False, on_epoch=True, prog_bar=True)
self.log('metric', metric, on_step=False, on_epoch=True, prog_bar=True)
def configure_optimizers(self):
if hasattr(self.hparams, 'weight_decay'):
weight_decay = self.hparams.weight_decay
else:
weight_decay = 0
optimizer = torch.optim.SGD([
{'params': self.projector.parameters(), 'lr': self.hparams.lr, 'weight_decay':weight_decay},
{'params': self.router.parameters(), 'lr': self.hparams.lr * 0.3, 'weight_decay':weight_decay},
{'params': [p for n, p in self.llama_model.named_parameters() if "gating" not in n], 'lr': self.hparams.lr},
# {'params': [p for n, p in self.llama_model.named_parameters() if "gating" in n], 'lr': self.hparams.lr * 1, 'weight_decay':weight_decay}
# {'params': self.llama_model.parameters(), 'lr': self.hparams.lr},
])
for i, param_group in enumerate(optimizer.param_groups):
print(f"Initial LR for group {i}: {param_group['lr']}")
total_params = sum(p.numel() for p in param_group['params'])
print(f"Parameter Group {i}: {total_params} parameters")
if self.hparams.lr_scheduler is None:
return optimizer
else:
max_step = self.trainer.max_steps
warmup_steps = max_step // 20
print(f'max_step: {max_step}')
print(f'warmup_steps: {warmup_steps}')
if self.hparams.lr_scheduler == 'cosine':
init_lr_list = [
self.hparams.lr,
self.hparams.lr * 0.3,
self.hparams.lr * 1
]
min_lr_list = [
self.hparams.lr_decay_min_lr,
self.hparams.lr_decay_min_lr * 0.3,
self.hparams.lr_decay_min_lr * 1
]
warmup_start_lr_list = [
self.hparams.lr_warmup_start_lr,
self.hparams.lr_warmup_start_lr * 0.3,
self.hparams.lr_warmup_start_lr * 1
]
self.scheduler = LinearWarmupCosineLRScheduler(
optimizer=optimizer,
max_step=max_step,
min_lr_list=min_lr_list,
init_lr_list=init_lr_list,
warmup_steps=warmup_steps,
warmup_start_lr_list=warmup_start_lr_list
)
for i, param_group in enumerate(optimizer.param_groups):
print(f"Initial LR for group {i}: {param_group['lr']}")
total_params = sum(p.numel() for p in param_group['params'])
print(f"Parameter Group {i}: {total_params} parameters")
else:
self.scheduler = None
raise ValueError('Invalid lr_scheduler type!')
return optimizer
def configure_loss(self, out, labels=None):
loss = self.hparams.loss.lower()
if loss == 'lm':
return out.loss
else:
raise ValueError("Invalid Loss Type!")
def on_save_checkpoint(self, checkpoint):
if self.hparams.save == 'part':
checkpoint.pop('optimizer_states')
to_be_removed = []
for key, value in checkpoint['state_dict'].items():
try:
if not self.get_parameter(key).requires_grad:
to_be_removed.append(key)
except AttributeError:
to_be_removed.append(key)
for key in to_be_removed:
checkpoint['state_dict'].pop(key)
elif self.hparams.save == 'all':
pass
def load_llm(self, llm_path):
print('Loading LLAMA')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llm_path, use_fast=False)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.llama_tokenizer.padding_side = "right"
self.llama_tokenizer.add_special_tokens({'additional_special_tokens': ['[PH]','[HistoryEmb]','[CansEmb]','[ItemEmb]']})
self.llama_model = LlamaForCausalLM.from_pretrained(llm_path, device_map="auto",load_in_8bit=True)
self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
if self.hparams.llm_tuning == 'lora':
if self.hparams.peft_dir:
self.llama_model = PeftModel.from_pretrained(self.llm_model, self.hparams.peft_dir, is_trainable=True)
else:
if self.hparams.peft_config:
peft_config = LoraConfig(**LoraConfig.from_json_file(self.hparams.peft_config))
else:
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.hparams.lora_r,
lora_alpha=self.hparams.lora_alpha,
lora_dropout=self.hparams.lora_dropout,
target_modules=['k_proj', 'v_proj', 'q_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'])
self.peft_config = peft_config
self.llama_model = get_peft_model(self.llama_model, peft_config)
self.llama_model.print_trainable_parameters()
elif self.hparams.llm_tuning == 'freeze':
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
elif self.hparams.llm_tuning == 'freeze_lora':
if self.hparams.peft_dir:
self.llama_model = PeftModel.from_pretrained(self.llm_model, self.hparams.peft_dir, is_trainable=True)
else:
if self.hparams.peft_config:
peft_config = LoraConfig(**LoraConfig.from_json_file(self.hparams.peft_config))
else:
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.hparams.lora_r,
lora_alpha=self.hparams.lora_alpha,
lora_dropout=self.hparams.lora_dropout,
target_modules=['k_proj', 'v_proj', 'q_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'])
self.peft_config = peft_config
self.llama_model = get_peft_model(self.llama_model, peft_config)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
self.llama_model.print_trainable_parameters()
elif self.hparams.llm_tuning == 'moelora':
if self.hparams.peft_dir:
self.llama_model = PeftModel.from_pretrained(self.llm_model, self.hparams.peft_dir, is_trainable=True)
else:
if self.hparams.peft_config:
peft_config = MoeLoraConfig(**MoeLoraConfig.from_json_file(self.hparams.peft_config))
else:
peft_config = MoeLoraConfig(task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.hparams.lora_r,
lora_alpha=self.hparams.lora_alpha,
lora_dropout=self.hparams.lora_dropout,
target_modules=['k_proj', 'v_proj', 'q_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
num_moe=self.hparams.num_moe,
gating=self.hparams.gating)
self.peft_config = peft_config
self.llama_model = get_peft_model(self.llama_model, peft_config)
"""for name, param in self.llama_model.named_parameters():
if "gating" not in name:
param.requires_grad = False"""
self.llama_model.print_trainable_parameters()
else:
raise NotImplementedError()
print('Loading LLAMA Done')
def load_projector(self):
name = self.hparams.model_name
camel_name = ''.join([i.capitalize() for i in name.split('_')])
try:
Model = getattr(importlib.import_module(
'.'+name, package=__package__), camel_name)
except:
raise ValueError(
f'Invalid Module File Name or Invalid Class Name {name}.{camel_name}!')
self.projector = self.instancialize(Model, rec_size=self.hparams.rec_size, llm_size=self.llama_model.config.hidden_size)
def instancialize(self, Model, **other_args):
class_args = inspect.getargspec(Model.__init__).args[1:]
inkeys = self.hparams.keys()
args1 = {}
for arg in class_args:
if arg in inkeys:
args1[arg] = getattr(self.hparams, arg)
args1.update(other_args)
# args1: args在hparams中有的部分
return Model(**args1)
def load_rec_model(self, rec_model_path):
print('Loading Rec Model')
self.rec_model = torch.load(rec_model_path, map_location="cpu")
self.rec_model.eval()
for name, param in self.rec_model.named_parameters():
param.requires_grad = False
print('Loding Rec model Done')
def encode_items(self, seq):
if self.hparams.rec_embed=="SASRec":
item_rec_embs=self.rec_model.cacu_x(seq)
elif self.hparams.rec_embed in ['Caser','GRU']:
item_rec_embs=self.rec_model.item_embeddings(seq)
item_txt_embs=self.projector(item_rec_embs)
return item_txt_embs
def encode_users(self, seq, len_seq):
if self.hparams.rec_embed=="SASRec":
user_rec_embs=self.rec_model.cacul_h(seq, len_seq)
elif self.hparams.rec_embed in ['Caser','GRU']:
user_rec_embs=self.rec_model.item_embeddings(seq)
user_txt_embs=self.projector(user_rec_embs)
return user_rec_embs
def embed_tokens(self, token_ids):
embeds = self.llama_model.base_model.embed_tokens(token_ids)
return embeds
# batch -> embeds
def wrap_emb(self, batch):
input_embeds = self.llama_model.get_input_embeddings()(batch["tokens"].input_ids)
his_token_id=self.llama_tokenizer("[HistoryEmb]", return_tensors="pt",add_special_tokens=False).input_ids.item()
cans_token_id=self.llama_tokenizer("[CansEmb]", return_tensors="pt",add_special_tokens=False).input_ids.item()
item_token_id=self.llama_tokenizer("[ItemEmb]", return_tensors="pt",add_special_tokens=False).input_ids.item()
his_item_embeds = self.encode_items(batch["seq"])
cans_item_embeds = self.encode_items(batch["cans"])
item_embeds=self.encode_items(batch["item_id"])
user_embeds=self.encode_users(batch["seq"], batch["len_seq"])
for i in range(len(batch["len_seq"])):
if (batch["tokens"].input_ids[i]==his_token_id).nonzero().shape[0]>0:
idx_tensor=(batch["tokens"].input_ids[i]==his_token_id).nonzero().view(-1)
for idx, item_emb in zip(idx_tensor,his_item_embeds[i,:batch["len_seq"][i].item()]):
input_embeds[i,idx]=item_emb
if (batch["tokens"].input_ids[i]==cans_token_id).nonzero().shape[0]>0:
idx_tensor=(batch["tokens"].input_ids[i]==cans_token_id).nonzero().view(-1)
for idx, item_emb in zip(idx_tensor,cans_item_embeds[i,:batch["len_cans"][i].item()]):
input_embeds[i,idx]=item_emb
if (batch["tokens"].input_ids[i]==item_token_id).nonzero().shape[0]>0:
idx=(batch["tokens"].input_ids[i]==item_token_id).nonzero().item()
input_embeds[i,idx]=item_embeds[i]
return input_embeds, user_embeds
def calculate_hr1(self,eval_content):
correct_num=0
valid_num=0
total_num=0
for i,generate in enumerate(eval_content["generate"]):
real=eval_content["real"][i]
cans=eval_content["cans"][i]
total_num+=1
generate=generate.strip().lower().strip()
real=real.strip().lower().strip()
cans=[item.strip().lower().strip() for item in cans]
gen_cans_list=[]
for cans_item in cans:
if cans_item in generate:
gen_cans_list.append(cans_item)
if len(gen_cans_list)==1:
valid_num+=1
if real == gen_cans_list[0]:
correct_num+=1
valid_ratio=valid_num/total_num
if valid_num>0:
hr1=correct_num/valid_num
else:
hr1=0
return valid_ratio,hr1
|