File size: 22,452 Bytes
9f13819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import inspect
import torch
import importlib
from torch import nn
from torch.nn import functional as F
import torch.optim.lr_scheduler as lrs

import pytorch_lightning as pl

from transformers import LlamaForCausalLM, LlamaTokenizer
import random
from pandas.core.frame import DataFrame
import os.path as op
import os
from optims import LinearWarmupCosineLRScheduler
import numpy as np
from .peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel, MoeLoraConfig, MoeLoraModel
import pickle
from .router.nlpr import LambdaLayer, ResidualBlock, GateFunction, NLPRecommendationRouter, build_router


# from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel
class MInterface(pl.LightningModule):
    def __init__(self, 
                 **kargs):
        super().__init__()
        self.save_hyperparameters()
        self.load_llm(self.hparams.llm_path)
        
        if self.hparams.router == 'share':
            self.router = build_router()

        self.load_rec_model(self.hparams.rec_model_path)
        self.load_projector()
        self.gradient_storage = {}
    
    def forward(self, batch):
        targets = batch["tokens"].input_ids.masked_fill(
            batch["tokens"].input_ids == self.llama_tokenizer.pad_token_id, -100
        ) # [batch_size, max_len]
        
        targets = targets.masked_fill((batch["tokens"].token_type_ids == 0)[:,1:], -100)
        # targets = targets.masked_fill((batch["tokens"].token_type_ids == 0)[:,:], -100)
        
        input_embeds, user_embeds = self.wrap_emb(batch)

        if self.hparams.router == 'share':
            gate_weights = self.router(user_embeds)
            outputs = self.llama_model(
                inputs_embeds=input_embeds,
                attention_mask=batch["tokens"].attention_mask,
                return_dict=True,
                labels=targets,
                use_cache=False,
                user_embeds=user_embeds,
                gate_weights=gate_weights
            )
            return outputs
        
        outputs = self.llama_model(
            inputs_embeds=input_embeds,
            attention_mask=batch["tokens"].attention_mask,
            return_dict=True,
            labels=targets,
            use_cache=False,
            user_embeds=user_embeds
        )
        return outputs

    def generate(self, batch,temperature=0.8,do_sample=False,num_beams=1,max_gen_length=64,min_gen_length=1,repetition_penalty=1.0,length_penalty=1.0, num_return_sequences=1):
        input_embeds, user_embeds = self.wrap_emb(batch)
        if self.hparams.router == 'share':
            gate_weights = self.router(user_embeds)
            generate_ids = self.llama_model.generate(
                inputs_embeds=input_embeds,
                attention_mask=batch["tokens"].attention_mask,
                temperature=temperature,
                do_sample=do_sample,
                num_beams=num_beams,
                max_new_tokens=max_gen_length,
                min_new_tokens=min_gen_length,
                pad_token_id=self.llama_tokenizer.pad_token_id,
                repetition_penalty=repetition_penalty,
                length_penalty=length_penalty,
                num_return_sequences=num_return_sequences,
                user_embeds=user_embeds,
                gate_weights = gate_weights
            )
            output_text=self.llama_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
            outputs=[text.strip() for text in output_text]
            return outputs
            
        gate_weights = self.router(user_embeds)
        
        generate_ids = self.llama_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=batch["tokens"].attention_mask,
            temperature=temperature,
            do_sample=do_sample,
            num_beams=num_beams,
            max_new_tokens=max_gen_length,
            min_new_tokens=min_gen_length,
            pad_token_id=self.llama_tokenizer.pad_token_id,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            num_return_sequences=num_return_sequences,
            
            user_embeds=user_embeds, 
            gate_weights = gate_weights
            )
        output_text=self.llama_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        outputs=[text.strip() for text in output_text]
        return outputs
    
    def capture_and_store_gradients(self):
        for name, param in self.llama_model.named_parameters():
            if "lora" in name and param.grad is not None:
                if name not in self.gradient_storage:
                    self.gradient_storage[name] = []
                self.gradient_storage[name].append(param.grad.clone().detach())
        
        if self.trainer.global_step % 10 == 0: 
            self.save_gradients_to_file()
            
    def save_gradients_to_file(self):
        directory = self.hparams.capture_dir
        if not os.path.exists(directory):
            os.makedirs(directory)
        file_path = os.path.join(directory, f'gradients_step_{self.trainer.global_step}.pkl')
        with open(file_path, 'wb') as f:
            pickle.dump(self.gradient_storage, f)
        self.gradient_storage = {} 
            
    def training_step(self, batch, batch_idx):
        if self.scheduler:
            self.scheduler.step(self.trainer.global_step, self.current_epoch, self.trainer.max_steps)
        if batch["flag"]:
            for name, param in self.projector.named_parameters():
                param.requires_grad = False
        else:
            for name, param in self.projector.named_parameters():
                param.requires_grad = True
        out = self(batch)
        loss = self.configure_loss(out)
        self.log('loss', loss, on_step=True, on_epoch=True, prog_bar=True)
        self.log('lr', self.scheduler.optimizer.param_groups[0]['lr'], on_step=True, on_epoch=True, prog_bar=True)
        self.log('global_step_num', self.trainer.global_step, on_step=True, on_epoch=True, prog_bar=True)
        
        return loss
            
    def on_validation_epoch_start(self):
        self.val_content={
            "generate":[],
            "real":[],
            "cans":[],
        }

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        generate_output = self.generate(batch)
        output=[]
        for i,generate in enumerate(generate_output):
            real=batch['correct_answer'][i]
            cans=batch['cans_name'][i]
            generate=generate.strip().split("\n")[0]
            output.append((generate,real,cans))
        return output

    def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
        for generate,real,cans in outputs:
            self.val_content["generate"].append(generate)
            self.val_content["real"].append(real)
            self.val_content["cans"].append(cans)

    def on_validation_epoch_end(self):
        df=DataFrame(self.val_content)
        if not os.path.exists(self.hparams.output_dir):
            os.makedirs(self.hparams.output_dir)
        df.to_csv(op.join(self.hparams.output_dir, 'valid.csv'))
        prediction_valid_ratio,hr=self.calculate_hr1(self.val_content)
        metric=hr*prediction_valid_ratio
        self.log('val_prediction_valid', prediction_valid_ratio, on_step=False, on_epoch=True, prog_bar=True)
        self.log('val_hr', hr, on_step=False, on_epoch=True, prog_bar=True)
        self.log('metric', metric, on_step=False, on_epoch=True, prog_bar=True)

    def on_test_epoch_start(self):
        self.test_content={
            "generate":[],
            "real":[],
            "cans":[],
        }

    @torch.no_grad()
    def test_step(self, batch, batch_idx):
        generate_output = self.generate(batch)
        output=[]
        for i,generate in enumerate(generate_output):
            real=batch['correct_answer'][i]
            cans=batch['cans_name'][i]
            generate=generate.strip().split("\n")[0]
            output.append((generate,real,cans))
        return output
    
    def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
        for generate,real,cans in outputs:
            self.test_content["generate"].append(generate)
            self.test_content["real"].append(real)
            self.test_content["cans"].append(cans)

    def on_test_epoch_end(self):
        df=DataFrame(self.test_content)
        if not os.path.exists(self.hparams.output_dir):
            os.makedirs(self.hparams.output_dir)
        df.to_csv(op.join(self.hparams.output_dir, 'test.csv'))
        prediction_valid_ratio,hr=self.calculate_hr1(self.test_content)
        metric=hr*prediction_valid_ratio

        self.log('test_prediction_valid', prediction_valid_ratio, on_step=False, on_epoch=True, prog_bar=True)
        self.log('test_hr', hr, on_step=False, on_epoch=True, prog_bar=True)
        self.log('metric', metric, on_step=False, on_epoch=True, prog_bar=True)

    def configure_optimizers(self):
        if hasattr(self.hparams, 'weight_decay'):
            weight_decay = self.hparams.weight_decay
        else:
            weight_decay = 0
        optimizer = torch.optim.SGD([
            {'params': self.projector.parameters(), 'lr': self.hparams.lr, 'weight_decay':weight_decay},
            
            {'params': self.router.parameters(), 'lr': self.hparams.lr * 0.3, 'weight_decay':weight_decay},
            
            {'params': [p for n, p in self.llama_model.named_parameters() if "gating" not in n], 'lr': self.hparams.lr},
            # {'params': [p for n, p in self.llama_model.named_parameters() if "gating" in n], 'lr': self.hparams.lr * 1, 'weight_decay':weight_decay}
           
            # {'params': self.llama_model.parameters(), 'lr': self.hparams.lr},
        ])
        
        
        for i, param_group in enumerate(optimizer.param_groups):
            print(f"Initial LR for group {i}: {param_group['lr']}")   
            total_params = sum(p.numel() for p in param_group['params'])
            print(f"Parameter Group {i}: {total_params} parameters")

        if self.hparams.lr_scheduler is None:
            return optimizer
        else:
            max_step = self.trainer.max_steps
            warmup_steps = max_step // 20
            print(f'max_step: {max_step}')
            print(f'warmup_steps: {warmup_steps}')
            if self.hparams.lr_scheduler == 'cosine':
                
                init_lr_list = [
                    self.hparams.lr,  
                    self.hparams.lr * 0.3, 
                    self.hparams.lr * 1
                ]
                min_lr_list = [
                    self.hparams.lr_decay_min_lr,  
                    self.hparams.lr_decay_min_lr * 0.3,  
                    self.hparams.lr_decay_min_lr * 1  
                ]
                warmup_start_lr_list = [
                    self.hparams.lr_warmup_start_lr, 
                    self.hparams.lr_warmup_start_lr * 0.3, 
                    self.hparams.lr_warmup_start_lr * 1 
                ]
                self.scheduler = LinearWarmupCosineLRScheduler(
                    optimizer=optimizer,
                    max_step=max_step,
                    min_lr_list=min_lr_list,
                    init_lr_list=init_lr_list,
                    warmup_steps=warmup_steps,
                    warmup_start_lr_list=warmup_start_lr_list
                )
                                
                
                for i, param_group in enumerate(optimizer.param_groups):
                    print(f"Initial LR for group {i}: {param_group['lr']}")   
                    total_params = sum(p.numel() for p in param_group['params'])
                    print(f"Parameter Group {i}: {total_params} parameters")
                    
                    
            else:
                self.scheduler = None
                raise ValueError('Invalid lr_scheduler type!')
            return optimizer

    def configure_loss(self, out, labels=None):
        loss = self.hparams.loss.lower()
        if loss == 'lm':
            return out.loss
        else:
            raise ValueError("Invalid Loss Type!")

    def on_save_checkpoint(self, checkpoint):
        if self.hparams.save == 'part':
            checkpoint.pop('optimizer_states')
            to_be_removed = []
            for key, value in checkpoint['state_dict'].items():
                try:
                    if not self.get_parameter(key).requires_grad:
                        to_be_removed.append(key)
                except AttributeError:
                    to_be_removed.append(key)
            for key in to_be_removed:
                checkpoint['state_dict'].pop(key)
        elif self.hparams.save == 'all':
            pass
        
    def load_llm(self, llm_path):
        print('Loading LLAMA')
        self.llama_tokenizer = LlamaTokenizer.from_pretrained(llm_path, use_fast=False)
        self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
        self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.llama_tokenizer.padding_side = "right"
        self.llama_tokenizer.add_special_tokens({'additional_special_tokens': ['[PH]','[HistoryEmb]','[CansEmb]','[ItemEmb]']})
        self.llama_model = LlamaForCausalLM.from_pretrained(llm_path, device_map="auto",load_in_8bit=True)
        self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
        if self.hparams.llm_tuning == 'lora':
            if self.hparams.peft_dir:
                self.llama_model = PeftModel.from_pretrained(self.llm_model, self.hparams.peft_dir, is_trainable=True)
            else:
                if self.hparams.peft_config:
                    peft_config = LoraConfig(**LoraConfig.from_json_file(self.hparams.peft_config))
                else:
                    peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
                                             inference_mode=False,
                                             r=self.hparams.lora_r,
                                             lora_alpha=self.hparams.lora_alpha,
                                             lora_dropout=self.hparams.lora_dropout,
                                             target_modules=['k_proj', 'v_proj', 'q_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'])
                self.peft_config = peft_config
                self.llama_model = get_peft_model(self.llama_model, peft_config)
            self.llama_model.print_trainable_parameters()
        elif self.hparams.llm_tuning == 'freeze':
            for name, param in self.llama_model.named_parameters():
                param.requires_grad = False
        elif self.hparams.llm_tuning == 'freeze_lora':
            if self.hparams.peft_dir:
                self.llama_model = PeftModel.from_pretrained(self.llm_model, self.hparams.peft_dir, is_trainable=True)
            else:
                if self.hparams.peft_config:
                    peft_config = LoraConfig(**LoraConfig.from_json_file(self.hparams.peft_config))
                else:
                    peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
                                             inference_mode=False,
                                             r=self.hparams.lora_r,
                                             lora_alpha=self.hparams.lora_alpha,
                                             lora_dropout=self.hparams.lora_dropout,
                                             target_modules=['k_proj', 'v_proj', 'q_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'])
                self.peft_config = peft_config
                self.llama_model = get_peft_model(self.llama_model, peft_config)
            for name, param in self.llama_model.named_parameters():
                param.requires_grad = False
            self.llama_model.print_trainable_parameters()
        elif self.hparams.llm_tuning == 'moelora':
            if self.hparams.peft_dir:
                self.llama_model = PeftModel.from_pretrained(self.llm_model, self.hparams.peft_dir, is_trainable=True)
            else:
                if self.hparams.peft_config:
                    peft_config = MoeLoraConfig(**MoeLoraConfig.from_json_file(self.hparams.peft_config))
                else:
                    peft_config = MoeLoraConfig(task_type=TaskType.CAUSAL_LM,
                                                inference_mode=False,
                                                r=self.hparams.lora_r,
                                                lora_alpha=self.hparams.lora_alpha,
                                                lora_dropout=self.hparams.lora_dropout,
                                                target_modules=['k_proj', 'v_proj', 'q_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
                                                num_moe=self.hparams.num_moe,
                                                gating=self.hparams.gating)
                self.peft_config = peft_config
                self.llama_model = get_peft_model(self.llama_model, peft_config)
                
                """for name, param in self.llama_model.named_parameters():
                    if "gating" not in name:
                        param.requires_grad = False"""
            self.llama_model.print_trainable_parameters()
        else:
            raise NotImplementedError()
 
        print('Loading LLAMA Done')

    def load_projector(self):
        name = self.hparams.model_name
        camel_name = ''.join([i.capitalize() for i in name.split('_')])
        try:
            Model = getattr(importlib.import_module(
                '.'+name, package=__package__), camel_name)
        except:
            raise ValueError(
                f'Invalid Module File Name or Invalid Class Name {name}.{camel_name}!')
        self.projector = self.instancialize(Model, rec_size=self.hparams.rec_size, llm_size=self.llama_model.config.hidden_size)

    def instancialize(self, Model, **other_args):
        class_args = inspect.getargspec(Model.__init__).args[1:]
        inkeys = self.hparams.keys()
        args1 = {}
        for arg in class_args:
            if arg in inkeys:
                args1[arg] = getattr(self.hparams, arg)
        args1.update(other_args)
        # args1: args在hparams中有的部分
        return Model(**args1)

    def load_rec_model(self, rec_model_path):
        print('Loading Rec Model')
        self.rec_model = torch.load(rec_model_path, map_location="cpu")
        self.rec_model.eval()
        for name, param in self.rec_model.named_parameters():
            param.requires_grad = False
        print('Loding Rec model Done')

    def encode_items(self, seq):
        if self.hparams.rec_embed=="SASRec":
            item_rec_embs=self.rec_model.cacu_x(seq)
        elif self.hparams.rec_embed in ['Caser','GRU']:
            item_rec_embs=self.rec_model.item_embeddings(seq)
        item_txt_embs=self.projector(item_rec_embs)
        return item_txt_embs

    def encode_users(self, seq, len_seq):
        if self.hparams.rec_embed=="SASRec":
            user_rec_embs=self.rec_model.cacul_h(seq, len_seq)
        elif self.hparams.rec_embed in ['Caser','GRU']:
            user_rec_embs=self.rec_model.item_embeddings(seq)
        
        user_txt_embs=self.projector(user_rec_embs)    
        return user_rec_embs
    
    def embed_tokens(self, token_ids):
        embeds = self.llama_model.base_model.embed_tokens(token_ids)
        return embeds

    # batch -> embeds
    def wrap_emb(self, batch):
        input_embeds = self.llama_model.get_input_embeddings()(batch["tokens"].input_ids)
        
           
        
        his_token_id=self.llama_tokenizer("[HistoryEmb]", return_tensors="pt",add_special_tokens=False).input_ids.item()
        cans_token_id=self.llama_tokenizer("[CansEmb]", return_tensors="pt",add_special_tokens=False).input_ids.item()
        item_token_id=self.llama_tokenizer("[ItemEmb]", return_tensors="pt",add_special_tokens=False).input_ids.item()
         
        
        his_item_embeds = self.encode_items(batch["seq"])
        cans_item_embeds = self.encode_items(batch["cans"])
        item_embeds=self.encode_items(batch["item_id"])
        
        
        user_embeds=self.encode_users(batch["seq"], batch["len_seq"])

        for i in range(len(batch["len_seq"])):
            if (batch["tokens"].input_ids[i]==his_token_id).nonzero().shape[0]>0:
                idx_tensor=(batch["tokens"].input_ids[i]==his_token_id).nonzero().view(-1)
                for idx, item_emb in zip(idx_tensor,his_item_embeds[i,:batch["len_seq"][i].item()]):
                    input_embeds[i,idx]=item_emb
            if (batch["tokens"].input_ids[i]==cans_token_id).nonzero().shape[0]>0:
                idx_tensor=(batch["tokens"].input_ids[i]==cans_token_id).nonzero().view(-1)
                for idx, item_emb in zip(idx_tensor,cans_item_embeds[i,:batch["len_cans"][i].item()]):
                    input_embeds[i,idx]=item_emb
            if (batch["tokens"].input_ids[i]==item_token_id).nonzero().shape[0]>0:
                idx=(batch["tokens"].input_ids[i]==item_token_id).nonzero().item()
                input_embeds[i,idx]=item_embeds[i]
        
        return input_embeds, user_embeds
     
    def calculate_hr1(self,eval_content):
        correct_num=0
        valid_num=0
        total_num=0
        for i,generate in enumerate(eval_content["generate"]):
            real=eval_content["real"][i]
            cans=eval_content["cans"][i]
            total_num+=1
            generate=generate.strip().lower().strip()
            real=real.strip().lower().strip()
            cans=[item.strip().lower().strip() for item in cans]
            gen_cans_list=[]
            for cans_item in cans:
                if cans_item in generate:
                    gen_cans_list.append(cans_item)
            if len(gen_cans_list)==1:
                valid_num+=1
                if real == gen_cans_list[0]:
                    correct_num+=1
        valid_ratio=valid_num/total_num
        if valid_num>0:
            hr1=correct_num/valid_num
        else:
            hr1=0
        return valid_ratio,hr1