File size: 6,449 Bytes
9f13819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .config import PeftType, PromptLearningConfig


def get_peft_model_state_dict(model, state_dict=None, adapter_name="default"):
    """
    Get the state dict of the Peft model.

    Args:
        model ([`PeftModel`]): The Peft model. When using torch.nn.DistributedDataParallel, DeepSpeed or FSDP,
        the model should be the underlying model/unwrapped model (i.e. model.module).
        state_dict (`dict`, *optional*, defaults to `None`):
            The state dict of the model. If not provided, the state dict of the model
        will be used.
    """
    config = model.peft_config[adapter_name]
    if state_dict is None:
        state_dict = model.state_dict()
    if config.peft_type in (PeftType.LORA, PeftType.ADALORA, PeftType.MOELORA):
        # to_return = lora_state_dict(model, bias=model.peft_config.bias)
        # adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py`
        # to be used directly with the state dict which is necessary when using DeepSpeed or FSDP
        bias = config.bias
        if bias == "none":
            to_return = {k: state_dict[k] for k in state_dict if "lora_" in k or "gating" in k}
        elif bias == "all":
            to_return = {k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k or "gating" in k}
        elif bias == "lora_only":
            to_return = {}
            for k in state_dict:
                if "lora_" in k:
                    to_return[k] = state_dict[k]
                    bias_name = k.split("lora_")[0] + "bias"
                    if bias_name in state_dict:
                        to_return[bias_name] = state_dict[bias_name]
                if "gating" in k:
                    to_return[k] = state_dict[k]
        else:
            raise NotImplementedError
        to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k) or ("gating" in k))}
        if config.peft_type == PeftType.ADALORA:
            rank_pattern = config.rank_pattern
            if rank_pattern is not None:
                rank_pattern = {k.replace(f".{adapter_name}", ""): v for k, v in rank_pattern.items()}
                config.rank_pattern = rank_pattern
                to_return = model.resize_state_dict_by_rank_pattern(rank_pattern, to_return, adapter_name)

    elif config.peft_type == PeftType.ADAPTION_PROMPT:
        to_return = {k: state_dict[k] for k in state_dict if k.split(".")[-1].startswith("adaption_")}
    elif isinstance(config, PromptLearningConfig):
        to_return = {}
        if config.inference_mode:
            prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight
        else:
            prompt_embeddings = model.get_prompt_embedding_to_save(adapter_name)
        to_return["prompt_embeddings"] = prompt_embeddings
    else:
        raise NotImplementedError
    if model.modules_to_save is not None:
        for key, value in state_dict.items():
            if any(f"{module_name}.modules_to_save.{adapter_name}" in key for module_name in model.modules_to_save):
                to_return[key.replace("modules_to_save.", "")] = value

    to_return = {k.replace(f".{adapter_name}", ""): v for k, v in to_return.items()}
    return to_return


def set_peft_model_state_dict(model, peft_model_state_dict, adapter_name="default"):
    """
    Set the state dict of the Peft model.

    Args:
        model ([`PeftModel`]): The Peft model.
        peft_model_state_dict (`dict`): The state dict of the Peft model.
    """
    config = model.peft_config[adapter_name]
    state_dict = {}
    if model.modules_to_save is not None:
        for key, value in peft_model_state_dict.items():
            if any(module_name in key for module_name in model.modules_to_save):
                for module_name in model.modules_to_save:
                    if module_name in key:
                        key = key.replace(module_name, f"{module_name}.modules_to_save.{adapter_name}")
                        break
            state_dict[key] = value
    else:
        state_dict = peft_model_state_dict

    if config.peft_type in (PeftType.LORA, PeftType.ADALORA, PeftType.MOELORA):
        peft_model_state_dict = {}
        for k, v in state_dict.items():
            if "lora_A" in k:
                k = k.replace("lora_A", f"lora_A.{adapter_name}")
                peft_model_state_dict[k] = v
                # suffix = k.split("lora_")[1]
                # if "." in suffix:
                #     suffix_to_replace = ".".join(suffix.split(".")[1:])
                #     k = k.replace(suffix_to_replace, f"{adapter_name}.{suffix_to_replace}")
                # else:
                #     k = f"{k}.{adapter_name}"
                # peft_model_state_dict[k] = v
            elif "lora_B" in k:
                k = k.replace("lora_B", f"lora_B.{adapter_name}")
                peft_model_state_dict[k] = v
            elif "gating" in k:
                k = k.replace("gating", f"gating.{adapter_name}")
                peft_model_state_dict[k] = v
            else:
                peft_model_state_dict[k] = v
        if config.peft_type == PeftType.ADALORA:
            rank_pattern = config.rank_pattern
            if rank_pattern is not None:
                model.resize_modules_by_rank_pattern(rank_pattern, adapter_name)
    elif isinstance(config, PromptLearningConfig) or config.peft_type == PeftType.ADAPTION_PROMPT:
        peft_model_state_dict = state_dict
    else:
        raise NotImplementedError
    load_result = model.load_state_dict(peft_model_state_dict, strict=False)
    if isinstance(config, PromptLearningConfig):
        model.prompt_encoder[adapter_name].embedding.load_state_dict(
            {"weight": peft_model_state_dict["prompt_embeddings"]}, strict=True
        )
    return load_result