File size: 8,581 Bytes
9f13819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import pandas as pd
import argparse
import torch
from torch import nn
import torch.nn.functional as F
import os
import logging
import time as Time
from collections import Counter
from SASRecModules_ori import *

def extract_axis_1(data, indices):
    res = []
    for i in range(data.shape[0]):
        res.append(data[i, indices[i], :])
    res = torch.stack(res, dim=0).unsqueeze(1)
    return res

class GRU(nn.Module):
    def __init__(self, hidden_size, item_num, state_size, gru_layers=1):
        super(GRU, self).__init__()
        self.hidden_size = hidden_size
        self.item_num = item_num
        self.state_size = state_size
        self.item_embeddings = nn.Embedding(
            num_embeddings=item_num + 1,
            embedding_dim=self.hidden_size,
        )
        nn.init.normal_(self.item_embeddings.weight, 0, 0.01)
        self.gru = nn.GRU(
            input_size=self.hidden_size,
            hidden_size=self.hidden_size,
            num_layers=gru_layers,
            batch_first=True
        )
        self.s_fc = nn.Linear(self.hidden_size, self.item_num)

    def forward(self, states, len_states):
        # Supervised Head
        emb = self.item_embeddings(states)
        emb_packed = torch.nn.utils.rnn.pack_padded_sequence(emb, len_states, batch_first=True, enforce_sorted=False)
        emb_packed, hidden = self.gru(emb_packed)
        hidden = hidden.view(-1, hidden.shape[2])
        supervised_output = self.s_fc(hidden)
        return supervised_output

    def forward_eval(self, states, len_states):
        # Supervised Head
        emb = self.item_embeddings(states)
        emb_packed = torch.nn.utils.rnn.pack_padded_sequence(emb, len_states, batch_first=True, enforce_sorted=False)
        emb_packed, hidden = self.gru(emb_packed)
        hidden = hidden.view(-1, hidden.shape[2])
        supervised_output = self.s_fc(hidden)

        return supervised_output


class Caser(nn.Module):
    def __init__(self, hidden_size, item_num, state_size, num_filters, filter_sizes,
                 dropout_rate):
        super(Caser, self).__init__()
        self.hidden_size = hidden_size
        self.item_num = int(item_num)
        self.state_size = state_size
        self.filter_sizes = eval(filter_sizes)
        self.num_filters = num_filters
        self.dropout_rate = dropout_rate
        self.item_embeddings = nn.Embedding(
            num_embeddings=item_num + 1,
            embedding_dim=self.hidden_size,
        )

        # init embedding
        nn.init.normal_(self.item_embeddings.weight, 0, 0.01)

        # Horizontal Convolutional Layers
        self.horizontal_cnn = nn.ModuleList(
            [nn.Conv2d(1, self.num_filters, (i, self.hidden_size)) for i in self.filter_sizes])
        # Initialize weights and biases
        for cnn in self.horizontal_cnn:
            nn.init.xavier_normal_(cnn.weight)
            nn.init.constant_(cnn.bias, 0.1)

        # Vertical Convolutional Layer
        self.vertical_cnn = nn.Conv2d(1, 1, (self.state_size, 1))
        nn.init.xavier_normal_(self.vertical_cnn.weight)
        nn.init.constant_(self.vertical_cnn.bias, 0.1)

        # Fully Connected Layer
        self.num_filters_total = self.num_filters * len(self.filter_sizes)
        final_dim = self.hidden_size + self.num_filters_total
        self.s_fc = nn.Linear(final_dim, item_num)

        # dropout
        self.dropout = nn.Dropout(self.dropout_rate)

    def forward(self, states, len_states):
        input_emb = self.item_embeddings(states)
        mask = torch.ne(states, self.item_num).float().unsqueeze(-1)
        input_emb *= mask
        input_emb = input_emb.unsqueeze(1)
        pooled_outputs = []
        for cnn in self.horizontal_cnn:
            h_out = nn.functional.relu(cnn(input_emb))
            h_out = h_out.squeeze()
            p_out = nn.functional.max_pool1d(h_out, h_out.shape[2])
            pooled_outputs.append(p_out)

        h_pool = torch.cat(pooled_outputs, 1)
        h_pool_flat = h_pool.view(-1, self.num_filters_total)

        v_out = nn.functional.relu(self.vertical_cnn(input_emb))
        v_flat = v_out.view(-1, self.hidden_size)

        out = torch.cat([h_pool_flat, v_flat], 1)
        out = self.dropout(out)
        supervised_output = self.s_fc(out)

        return supervised_output

    def forward_eval(self, states, len_states):
        input_emb = self.item_embeddings(states)
        mask = torch.ne(states, self.item_num).float().unsqueeze(-1)
        input_emb *= mask
        input_emb = input_emb.unsqueeze(1)
        pooled_outputs = []
        for cnn in self.horizontal_cnn:
            h_out = nn.functional.relu(cnn(input_emb))
            h_out = h_out.squeeze()
            p_out = nn.functional.max_pool1d(h_out, h_out.shape[2])
            pooled_outputs.append(p_out)

        h_pool = torch.cat(pooled_outputs, 1)
        h_pool_flat = h_pool.view(-1, self.num_filters_total)

        v_out = nn.functional.relu(self.vertical_cnn(input_emb))
        v_flat = v_out.view(-1, self.hidden_size)

        out = torch.cat([h_pool_flat, v_flat], 1)
        out = self.dropout(out)
        supervised_output = self.s_fc(out)
        
        return supervised_output


class SASRec(nn.Module):
    def __init__(self, hidden_size, item_num, state_size, dropout, device, num_heads=1):
        super().__init__()
        self.state_size = state_size
        self.hidden_size = hidden_size
        self.item_num = int(item_num)
        self.dropout = nn.Dropout(dropout)
        self.device = device
        self.item_embeddings = nn.Embedding(
            num_embeddings=item_num + 1,
            embedding_dim=hidden_size,
        )
        nn.init.normal_(self.item_embeddings.weight, 0, 1)
        self.positional_embeddings = nn.Embedding(
            num_embeddings=state_size,
            embedding_dim=hidden_size
        )
        self.emb_dropout = nn.Dropout(dropout)
        self.ln_1 = nn.LayerNorm(hidden_size)
        self.ln_2 = nn.LayerNorm(hidden_size)
        self.ln_3 = nn.LayerNorm(hidden_size)
        self.mh_attn = MultiHeadAttention(hidden_size, hidden_size, num_heads, dropout)
        self.feed_forward = PositionwiseFeedForward(hidden_size, hidden_size, dropout)
        self.s_fc = nn.Linear(hidden_size, item_num)

    def forward(self, states, len_states):
        inputs_emb = self.item_embeddings(states)
        inputs_emb += self.positional_embeddings(torch.arange(self.state_size).to(self.device))
        seq = self.emb_dropout(inputs_emb)
        mask = torch.ne(states, self.item_num).float().unsqueeze(-1).to(self.device)
        seq *= mask
        seq_normalized = self.ln_1(seq)
        mh_attn_out = self.mh_attn(seq_normalized, seq)
        ff_out = self.feed_forward(self.ln_2(mh_attn_out))
        ff_out *= mask
        ff_out = self.ln_3(ff_out)
        state_hidden = extract_axis_1(ff_out, len_states - 1)
        supervised_output = self.s_fc(state_hidden).squeeze()
        return supervised_output

    def forward_eval(self, states, len_states):
        inputs_emb = self.item_embeddings(states)
        inputs_emb += self.positional_embeddings(torch.arange(self.state_size).to(self.device))
        seq = self.emb_dropout(inputs_emb)
        mask = torch.ne(states, self.item_num).float().unsqueeze(-1).to(self.device)
        seq *= mask
        seq_normalized = self.ln_1(seq)
        mh_attn_out = self.mh_attn(seq_normalized, seq)
        ff_out = self.feed_forward(self.ln_2(mh_attn_out))
        ff_out *= mask
        ff_out = self.ln_3(ff_out)
        state_hidden = extract_axis_1(ff_out, len_states - 1)
        supervised_output = self.s_fc(state_hidden).squeeze()
        return supervised_output
    
    def cacul_h(self, states, len_states):
        device = self.device  
        states = states.to(device)
        inputs_emb = self.item_embeddings(states)
        inputs_emb += self.positional_embeddings(torch.arange(self.state_size).to(self.device))
        seq = self.emb_dropout(inputs_emb)
        mask = torch.ne(states, self.item_num).float().unsqueeze(-1).to(self.device)
        seq *= mask
        seq_normalized = self.ln_1(seq)
        mh_attn_out = self.mh_attn(seq_normalized, seq)
        ff_out = self.feed_forward(self.ln_2(mh_attn_out))
        ff_out *= mask
        ff_out = self.ln_3(ff_out)
        state_hidden = extract_axis_1(ff_out, len_states - 1)
        # print("state_hidden.size", state_hidden.size())
        return state_hidden
    
    def cacu_x(self, x):
        x = self.item_embeddings(x)

        return x