import torch.nn as nn import torch.nn.functional as F class LambdaLayer(nn.Module): def __init__(self, lambd): super(LambdaLayer, self).__init__() self.lambd = lambd def forward(self, x): return self.lambd(x) class Block(nn.Module): expansion = 1 def __init__(self, in_planes, planes, conv_layer, stride=1): super(Block, self).__init__() self.conv1 = conv_layer(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv_layer(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: diff = planes - in_planes self.shortcut = LambdaLayer( lambda x: F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, int(diff * 0.5), int((diff + 1) * 0.5)), "constant", 0)) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Router(nn.Module): def __init__(self, block, num_blocks, num_experts=2): super(Router, self).__init__() self.in_planes = 16 self.conv_layer = nn.Conv2d self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.in_planes) self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) self.fc = nn.Linear(64, num_experts) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) def _make_layer(self, block, planes, num_blocks, stride): planes = planes strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, self.conv_layer, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out def build_router(**kwargs): return Router(Block, [3, 3, 3], **kwargs)