import math class LinearWarmupCosineLRScheduler: def __init__( self, optimizer, min_lr_list, init_lr_list, warmup_steps=0, warmup_start_lr_list=None, **kwargs ): self.optimizer = optimizer self.min_lr_list = min_lr_list self.init_lr_list = init_lr_list self.warmup_steps = warmup_steps self.warmup_start_lr_list = warmup_start_lr_list if warmup_start_lr_list is not None else init_lr_list def step(self, cur_step, cur_epoch, max_step): for i, param_group in enumerate(self.optimizer.param_groups): if cur_epoch == 0 and cur_step < self.warmup_steps: lr = self.warmup_lr_schedule(cur_step, self.warmup_start_lr_list[i], self.init_lr_list[i]) else: lr = self.cosine_lr_schedule(cur_step - self.warmup_steps, max_step - self.warmup_steps, self.init_lr_list[i], self.min_lr_list[i]) param_group["lr"] = lr def cosine_lr_schedule(self, step, max_step, init_lr, min_lr): """Decay the learning rate using cosine schedule""" lr = (init_lr - min_lr) * 0.5 * (1 + math.cos(math.pi * step / max_step)) + min_lr return lr def warmup_lr_schedule(self, step, init_lr, max_lr): """Warmup the learning rate""" lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max(self.warmup_steps, 1)) return lr def state_dict(self): return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict): self.__dict__.update(state_dict)