|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
class QwenMathModel: |
|
def __init__(self, model_name="Qwen/Qwen2.5-Math-1.5B", device="cuda"): |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
|
|
) |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
|
|
torch_dtype=torch.float16 |
|
).to(device) |
|
self.device = device |
|
|
|
def generate(self, prompt: str, max_new_tokens=1024) -> str: |
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device) |
|
|
|
|
|
output = self.model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=0.7, |
|
pad_token_id=self.tokenizer.eos_token_id, |
|
use_cache=True |
|
) |
|
decoded = self.tokenizer.decode(output[0], skip_special_tokens=True) |
|
return decoded[len(prompt):].strip() |