llm_math_reasoning / models /qwen2_5_math.py
MingLi
code
63c6bf0
# models/qwen2_5_math.py
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
class QwenMathModel:
def __init__(self, model_name="Qwen/Qwen2.5-Math-1.5B", device="cuda"):
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
# token=token
)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
# token=token,
torch_dtype=torch.float16
).to(device)
self.device = device
def generate(self, prompt: str, max_new_tokens=1024) -> str:
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
# δΌ˜εŒ–η”Ÿζˆε‚ζ•°
output = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id,
use_cache=True
)
decoded = self.tokenizer.decode(output[0], skip_special_tokens=True)
return decoded[len(prompt):].strip()