File size: 14,320 Bytes
852c75b |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe233071120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2330711b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe233071240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2330712d0>", "_build": "<function ActorCriticPolicy._build at 0x7fe233071360>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2330713f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe233071480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe233071510>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2330715a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe233071630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2330716c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe233071750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe233066100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684874232855664955, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPGm1T3h8kY//P/uvnva1T9uRfk//iBLwIFiFT6pbvY+bDwIvwrgiD6/96E/7LeLQEa3tr/gZRM/QbUuv18NHb8w1l4/eenQP/GtVb7cCChAHhq/P32dDL76V80+xVjdu13KN7/1sbC/ij+QPpC/ub+Dw6s+5HSDP9IpeL/0tgC+u3YZPznl7L4A+C4/gft7PRYejD+GEcU/vuNaPop0F79Cb40+yxEuQK8T2b/YcJW+Qf/pPzyAWUBEY/0+GgF6Pe+FtL8vZrc8561yv5Od/r9dyje/CHM5P4o/kD4oaTA/G36TP6KuED/xbwm+B9uWP9ur7j+wJrA/XZYzPy2Ee7/Shws/T72vPopx8L6bUWC/H/uEP370tT8Vzli/PcYyP/kTXz+jvDo/c1D/PtBRoTwqEn+/XApnv91mOT873WS/Xco3vwhzOT+KP5A+KGkwP4bstD9wNmk/18U3v9relD8pycI/Aq81PxNZZz8z91q/gjutPR/mXL6qV/S+sgqCvzBj0T/xlMm8snaHv1lisD94cds+VjLxPlwAuD59lZC/TT20v9UfmbrNfoE9StewPl3KN78Iczk/ij+QPihpMD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADDGW+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8GsLvQAAAABlxeC/AAAAAKffJ70AAAAACH/sPwAAAAA+MAa+AAAAAAR7+D8AAAAAUx/evQAAAACD9+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALH/HNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNefPr0AAAAAJA/1vwAAAAC8ULk9AAAAAPwH3j8AAAAAqWuZPQAAAADu1Ps/AAAAAH9iML0AAAAAHzfhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyL9bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAa+eg9AAAAADwD/b8AAAAAeo5GPQAAAAACAPE/AAAAAPgG4b0AAAAAw5MAQAAAAADcysu9AAAAAMJi9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACM8gw3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApOT5vQAAAAAiiP2/AAAAAJULTj0AAAAAzoXhPwAAAAAP6dg9AAAAAOTO4D8AAAAAiaypvQAAAAB1ROS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ057WhAWzqMAWyUTegDjAF0lEdAsjBd/FzdUXV9lChoBkdAoHgjVawD/2gHTegDaAhHQLIxK56+nIh1fZQoaAZHQJ/uJmL9/BpoB03oA2gIR0CyMq5IczZZdX2UKGgGR0ChGZaA4GUwaAdN6ANoCEdAsjNNdC3PRnV9lChoBkdAm6CXTVlPJ2gHTegDaAhHQLI4g3kPtlZ1fZQoaAZHQKDG0VnmJWNoB03oA2gIR0CyOU6kEcKgdX2UKGgGR0Ce7mTHKfWdaAdN6ANoCEdAsjqUi/wiJXV9lChoBkdAn48yiM5wO2gHTegDaAhHQLI7CDaXa8J1fZQoaAZHQIrMSq2jO9poB03oA2gIR0CyP14/eLvUdX2UKGgGR0CY9vzCk43naAdN6ANoCEdAskBFCNS62HV9lChoBkdAmkCXZTQ3P2gHTegDaAhHQLJCHZTyaux1fZQoaAZHQJvC35P/JeVoB03oA2gIR0CyQsIJVsDXdX2UKGgGR0CeHqgNPP9laAdN6ANoCEdAskeBkRSP2nV9lChoBkdAn6kGsA/9pGgHTegDaAhHQLJIURArxy51fZQoaAZHQKEi6rCm/FloB03oA2gIR0CySZkE9t/GdX2UKGgGR0Cgv58IqsltaAdN6ANoCEdAskoIAWBSUHV9lChoBkdAnddND+irUGgHTegDaAhHQLJOg2HtWuJ1fZQoaAZHQJruOJIlMRJoB03oA2gIR0CyT7GO+7DmdX2UKGgGR0Cc13hbGFSLaAdN6ANoCEdAslGrlCCz1XV9lChoBkdAmg/dDc/MXGgHTegDaAhHQLJSL9G7SRd1fZQoaAZHQJ/2qg8KXv9oB03oA2gIR0CyVnYWtU4rdX2UKGgGR0CguTBNdqtYaAdN6ANoCEdAsldAs9SuQ3V9lChoBkdAevd0FKTSs2gHTegDaAhHQLJYi02cawV1fZQoaAZHQKEHAGW2PT5oB03oA2gIR0CyWQBDohZAdX2UKGgGR0CMGuBeXzDoaAdN6ANoCEdAsl9x5B1LanV9lChoBkdAoZfjo4dZJWgHTegDaAhHQLJgrv/BFd91fZQoaAZHQKBbXilSCOFoB03oA2gIR0CyYjvNzKcNdX2UKGgGR0CiG/K5byH3aAdN6ANoCEdAsmKvPzFuN3V9lChoBkdAoPPkyad+X2gHTegDaAhHQLJm/a9K28Z1fZQoaAZHQJ9yNjtoi9toB03oA2gIR0CyZ8Vnyup0dX2UKGgGR0Cgqm0AcT8HaAdN6ANoCEdAsmkNTHbRGHV9lChoBkdAoHds4o7V8WgHTegDaAhHQLJpfQSi/PB1fZQoaAZHQJ5Fbd69kBloB03oA2gIR0CybtvS2H+IdX2UKGgGR0CfqwMs6JZXaAdN6ANoCEdAsm/YGZ/kNnV9lChoBkdAoHW8zAN5MWgHTegDaAhHQLJxIOkLx7R1fZQoaAZHQJ/QGBf8dghoB03oA2gIR0CycZCTUy57dX2UKGgGR0ChN0BVU+9raAdN6ANoCEdAsnXXSsr/bXV9lChoBkdAobBwYNy5qmgHTegDaAhHQLJ2nUJv5xl1fZQoaAZHQKJnPq0tyxRoB03oA2gIR0Cyd+fTLGJfdX2UKGgGR0ChPPmu9vjwaAdN6ANoCEdAsnhTMFEApHV9lChoBkdAok80/t6X0GgHTegDaAhHQLJ92anaWX11fZQoaAZHQKJhwXw9aEBoB03oA2gIR0CyfqUsnRb9dX2UKGgGR0CiMLm47Rv4aAdN6ANoCEdAsn/qCPIXCXV9lChoBkdAokrnCj1wpGgHTegDaAhHQLKAVwyIpH91fZQoaAZHQKFtTkVeruJoB03oA2gIR0CyhJ9Ujs2OdX2UKGgGR0CdkkZkTYdyaAdN6ANoCEdAsoVty6tknXV9lChoBkdAoUpjwx33YmgHTegDaAhHQLKGsKneizt1fZQoaAZHQKAnufZElVtoB03oA2gIR0CyhyAP7N0OdX2UKGgGR0ChQIXkgfU4aAdN6ANoCEdAsoyjRVp9JHV9lChoBkdAny+r6LwWnGgHTegDaAhHQLKNa63y7PJ1fZQoaAZHQKDBLxNIsiBoB03oA2gIR0CyjrGMfigkdX2UKGgGR0Chkdxyn1nNaAdN6ANoCEdAso8fnQpnYnV9lChoBkdAoOzSAlOXV2gHTegDaAhHQLKTZbwBo251fZQoaAZHQKHIRM4cWCVoB03oA2gIR0CylDB1DBuXdX2UKGgGR0ChRthGpda/aAdN6ANoCEdAspWr5ZbILnV9lChoBkdAoWRD8k2P1mgHTegDaAhHQLKWUoUzsQd1fZQoaAZHQKKO1y6MBIZoB03oA2gIR0Cym3+okzGhdX2UKGgGR0CiYMzAN5MUaAdN6ANoCEdAspxQH2RJVnV9lChoBkdAopgKpaRp12gHTegDaAhHQLKdkwDeTFF1fZQoaAZHQKIqaSwnpjdoB03oA2gIR0CyngKn3ta7dX2UKGgGR0CgHu6X8fmtaAdN6ANoCEdAsqJBQemvXHV9lChoBkdAoTWBs41gpmgHTegDaAhHQLKjB9+gDih1fZQoaAZHQKD1kEhaC+VoB03oA2gIR0CypMwlF+d9dX2UKGgGR0CgzELhrFfiaAdN6ANoCEdAsqVqQ6p5vHV9lChoBkdAonvUcIZ62WgHTegDaAhHQLKqKj7ALzB1fZQoaAZHQKGr38G9pRJoB03oA2gIR0CyqvF0DEFXdX2UKGgGR0Ch380UO/cnaAdN6ANoCEdAsqw+0UoKD3V9lChoBkdAoYdwG8mKImgHTegDaAhHQLKssCMPz4F1fZQoaAZHQKBNhDziCJ5oB03oA2gIR0CysPO717IDdX2UKGgGR0CdqK0EovzwaAdN6ANoCEdAsrIZZha1TnV9lChoBkdAoCXB+H8CP2gHTegDaAhHQLK0AAymALB1fZQoaAZHQJ+hClLvkR1oB03oA2gIR0CytLBzaK1pdX2UKGgGR0Cg6VXDFZPmaAdN6ANoCEdAsrj6l0o0AXV9lChoBkdAn/56Np/PPmgHTegDaAhHQLK5w/jKgZl1fZQoaAZHQKC8yzTnaFpoB03oA2gIR0CyuwWOlwcYdX2UKGgGR0CaaLzLfUF0aAdN6ANoCEdAsrtz2exwAHV9lChoBkdAnwl+nqFAV2gHTegDaAhHQLLAH1kUbkx1fZQoaAZHQJ5zWZtvXK9oB03oA2gIR0CywUd+XqqwdX2UKGgGR0CdsAYoRZlnaAdN6ANoCEdAssMVhNM4+HV9lChoBkdAnHyEVnEl3WgHTegDaAhHQLLDgeHzpX91fZQoaAZHQJ7WKnFYMfBoB03oA2gIR0Cyx7gDzRQadX2UKGgGR0Cd52mUGFBZaAdN6ANoCEdAssiHXPJJXnV9lChoBkdAnacPEn9ehWgHTegDaAhHQLLJztQbdad1fZQoaAZHQJ6lIr7O3UhoB03oA2gIR0Cyyj3MUypJdX2UKGgGR0CfXBW/JvHcaAdN6ANoCEdAss9fA2ycC3V9lChoBkdAoI78iILw4WgHTegDaAhHQLLQoYfGMn91fZQoaAZHQJ3HNnDiwStoB03oA2gIR0Cy0e9eMQ2/dX2UKGgGR0ChIMGaYu01aAdN6ANoCEdAstJcUxmCiHV9lChoBkdAoYoX642CNGgHTegDaAhHQLLWjZJ04ip1fZQoaAZHQKE7u5paibloB03oA2gIR0Cy12AGGEf1dX2UKGgGR0CiBDWPcSGraAdN6ANoCEdAstijEn9ehXV9lChoBkdAoZz5byH2y2gHTegDaAhHQLLZD/dZaFF1fZQoaAZHQJ5eqzVtoBdoB03oA2gIR0Cy3pwM6RyPdX2UKGgGR0Cgq7bdrO7haAdN6ANoCEdAst9i3CsOonV9lChoBkdAoE6SUaAFxGgHTegDaAhHQLLgpQO4G2V1fZQoaAZHQKEpuxkd3jdoB03oA2gIR0Cy4RXmmtQsdX2UKGgGR0ChvQQe3hGZaAdN6ANoCEdAsuVX4SHuZ3V9lChoBkdAohjD2USqVGgHTegDaAhHQLLmJS5RTCN1fZQoaAZHQKLbiZv1lGxoB03oA2gIR0Cy52Mpb2UTdX2UKGgGR0CiD0IeHSF5aAdN6ANoCEdAsufYWYWtVHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |