emmashe15 commited on
Commit
8d2cacd
·
1 Parent(s): dcd21b9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 915.83 +/- 240.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2939a4d8403f9c8ecc079ae1741aca82d9e90f020ac30b817981677b2b56984d
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc47baa9d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc47baa9dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc47baa9e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc47baa9ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc47baa9f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc47ba2f040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc47ba2f0d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc47ba2f160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc47ba2f1f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc47ba2f280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc47ba2f310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc47ba2f3a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc47baa8840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677997228901344452,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADnPM7wCXgZADgW6vywMzD64Xl3ARzlSv7MOWz8/qK++C9oVv3+jLL8nhjc/lkWCvqUCpb99RaLACmBIvil6qz5XXEO/4sYAwHQ2Tz8lfpc9TN/7vp9HHMDdAwy/aeupvGqGGT+w0JY+F6sQPxZzur+urIw/G9YCQBf+pL+dhTJA8hVDvnyRaz+xPxQ/m4yJv6ZLjL8HU7i+PEJKvlq19LwK2KC+JxQFQCywxrziO+8/mwvAP1tnDr7P84w8oOYRPhEfjb9ihpW9yX1wP1h1Xj/9b9W/sNCWPherED9Nvy8/LtaeP0JLEUC3pArA5dhkP2rw6r8Osko/l5ZvPjGMK798qai+r/VuvztZSr4NlyQ8r4ewv8CPBECSRuu+FEROP3dhzT+AiqRAJoMCv9yWxD4Zjoe/4GASPpc1oT+U0CM//W/Vv7DQlj4XqxA/Tb8vP0v4hj7CNca/zDQhv+BnmD9VB8a/r5ABP6y+7z01HEy/ZP2rv6PvEsDUpkm+KBieOw6o879++Y4/a8+lPmowtT+P6uS/QPtzPiE1TT992O4+ur7KvkNDhr+bLD8/3F6BP/1v1b+w0JY+F6sQP02/Lz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC8GEK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAde68vAAAAABtzO2/AAAAACwvy70AAAAA6dTkPwAAAADi+Ha9AAAAAIlf+T8AAAAAMw4kvAAAAAD2WOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJifRNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgODJhD0AAAAANQLZvwAAAADlfHQ9AAAAAC4m4T8AAAAAEZmBPQAAAACmW+w/AAAAAPQAprsAAAAA16vlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALNfzTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICEUYi9AAAAAAYE3L8AAAAA91W3PAAAAAC9U+g/AAAAABIFbj0AAAAA57DvPwAAAACA2PO9AAAAAEz5778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLQU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkZ9xPAAAAADTEeu/AAAAAOJnTrwAAAAAfW/+PwAAAAC1qdA7AAAAAJu72z8AAAAAifjmvQAAAADEpgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQITDxxR2r4qMAWyUTegDjAF0lEdAsQKDxFy7w3V9lChoBkdAiQpfqgRK6GgHTegDaAhHQLECspHqeK91fZQoaAZHQI+E+oP07KdoB03oA2gIR0CxA8TPWxyGdX2UKGgGR0CSAk3C9AX3aAdN6ANoCEdAsQaYZMtbtHV9lChoBkdAl5kWGucME2gHTegDaAhHQLELxeenQ6Z1fZQoaAZHQJMOSeTV2A5oB03oA2gIR0CxC+UzTF2ndX2UKGgGR0CSsZNMGorGaAdN6ANoCEdAsQyXqs2ehHV9lChoBkdAjS93I2fkFWgHTegDaAhHQLEOS88cMmZ1fZQoaAZHQJMxEBikO7RoB03oA2gIR0CxFJZSR8txdX2UKGgGR0CM19g75mAcaAdN6ANoCEdAsRTI8cMmW3V9lChoBkdAiIb8VYZEUmgHTegDaAhHQLEV9Xe3x4J1fZQoaAZHQIo+Zz7uUlloB03oA2gIR0CxGBW3jMmndX2UKGgGR0CEwV6TGHYZaAdN6ANoCEdAsR0mo60Y0nV9lChoBkdAkOmpFb3XZ2gHTegDaAhHQLEdRLS/j811fZQoaAZHQJhDagL7XQNoB03oA2gIR0CxHfT9GZuydX2UKGgGR0CT1BLKV6eHaAdN6ANoCEdAsR+ziT+vQnV9lChoBkdAkxRVk1/DtWgHTegDaAhHQLEm531BdD91fZQoaAZHQJHCw4JeE7JoB03oA2gIR0CxJwYbjtG/dX2UKGgGR0CT3q2St/4JaAdN6ANoCEdAsSe2tKZlWnV9lChoBkdAkXfB1xKg7GgHTegDaAhHQLEpY9wWFex1fZQoaAZHQJUIEmiQDFJoB03oA2gIR0CxLlUlqrR0dX2UKGgGR0CQk02jwhGIaAdN6ANoCEdAsS5z2lEZznV9lChoBkdAlqI9nTRYzWgHTegDaAhHQLEvIdDpkf91fZQoaAZHQJgWQ3Ov+wVoB03oA2gIR0CxMOiXD3uedX2UKGgGR0CQ+WAWBSUDaAdN6ANoCEdAsTgagVXV9XV9lChoBkdAltB/XGwRoWgHTegDaAhHQLE4OJp35et1fZQoaAZHQJEwd6iTMaFoB03oA2gIR0CxOOik9ECvdX2UKGgGR0CU1PvKEFnqaAdN6ANoCEdAsTqX7O3UhHV9lChoBkdAh1vMIE8q4GgHTegDaAhHQLFADwwj+rF1fZQoaAZHQJIvOBbwBo5oB03oA2gIR0CxQD1U2kzodX2UKGgGR0CRLAN6PbPAaAdN6ANoCEdAsUFkmplz2nV9lChoBkdAikHX9R77bmgHTegDaAhHQLFE8QFLWZt1fZQoaAZHQJEK2ZiNKiBoB03oA2gIR0CxS5y0BwMqdX2UKGgGR0CTI98OTaCdaAdN6ANoCEdAsUu627Wd3HV9lChoBkdAkIhzB/I8yWgHTegDaAhHQLFMa2Xb/Ot1fZQoaAZHQJO1hYlpoK5oB03oA2gIR0CxThM7hegMdX2UKGgGR0CQgdbdJrckaAdN6ANoCEdAsVLlYV6/qXV9lChoBkdAkt4Ihpxm02gHTegDaAhHQLFTA96kZaV1fZQoaAZHQJKYuarmyPdoB03oA2gIR0CxVA/mHP/rdX2UKGgGR0CVgpjTKDChaAdN6ANoCEdAsVbBPSDyv3V9lChoBkdAk0tiQLeANGgHTegDaAhHQLFchSwW30B1fZQoaAZHQH7ciRjjJdVoB03oA2gIR0CxXKHs5XEJdX2UKGgGR0CS/Ikadc0MaAdN6ANoCEdAsV1XmfXf7HV9lChoBkdAj+AAWzniemgHTegDaAhHQLFfEqKP4mF1fZQoaAZHQJMY0uTRplBoB03oA2gIR0CxZINpM6BAdX2UKGgGR0CO5y8Gs3hoaAdN6ANoCEdAsWSwV2zOX3V9lChoBkdAiUBzIeYD1WgHTegDaAhHQLFlx/Firkt1fZQoaAZHQJPIND+irT9oB03oA2gIR0CxaJvtQbdadX2UKGgGR0CUQfxJd0JXaAdN6ANoCEdAsW2wsWfseHV9lChoBkdAk+RWIsRQJ2gHTegDaAhHQLFtzqfOD8N1fZQoaAZHQJG6mkVN5+poB03oA2gIR0CxboJlz2eydX2UKGgGR0COXIJLM9r5aAdN6ANoCEdAsXAzpkf9xnV9lChoBkdAkZ6/EKmbb2gHTegDaAhHQLF2V9mYjSp1fZQoaAZHQJPiUXJo0yhoB03oA2gIR0CxdolYhdMTdX2UKGgGR0CSKqlRP421aAdN6ANoCEdAsXer/6wdKnV9lChoBkdAhLyKraM72mgHTegDaAhHQLF5yol2Ned1fZQoaAZHQJT8PD7655JoB03oA2gIR0Cxfq04WDYidX2UKGgGR0CWv5tXPqs2aAdN6ANoCEdAsX7J6KLsKXV9lChoBkdAlqpMJdB0IWgHTegDaAhHQLF/eTQVsUJ1fZQoaAZHQJVTALUkOZtoB03oA2gIR0CxgS9qUNaydX2UKGgGR0CGDZ7w8W9EaAdN6ANoCEdAsYgV0nw5N3V9lChoBkdAiOI51/2Cd2gHTegDaAhHQLGIR93KSxJ1fZQoaAZHQJN5ycI7eVNoB03oA2gIR0CxiRxKlHjIdX2UKGgGR0CIxYqoZQ54aAdN6ANoCEdAsYrK1LJ0XHV9lChoBkdAlGQEpVjqfWgHTegDaAhHQLGPnwj+rEN1fZQoaAZHQJNBvjWCmMxoB03oA2gIR0Cxj7+WfK6ndX2UKGgGR0COGk8FpwjuaAdN6ANoCEdAsZBz9n9NvnV9lChoBkdAj8jBjWkJr2gHTegDaAhHQLGSIaFEiMZ1fZQoaAZHQJeXWk1uR9xoB03oA2gIR0CxmUPhMrVfdX2UKGgGR0CB6hO9FnZkaAdN6ANoCEdAsZlhdmg8KXV9lChoBkdAk0hLXtjTa2gHTegDaAhHQLGaFIk7fYV1fZQoaAZHQJRoYpz90ihoB03oA2gIR0Cxm8/acqe9dX2UKGgGR0CU7/7RfF72aAdN6ANoCEdAsaC/bJwKjXV9lChoBkdAmGzgrhBJI2gHTegDaAhHQLGg3ZuQ6p51fZQoaAZHQJckivECNjtoB03oA2gIR0CxoYi0rsjWdX2UKGgGR0CXEWv60pmVaAdN6ANoCEdAsaOiLn9vTHV9lChoBkdAlSM9EkSmImgHTegDaAhHQLGqW4Wk8A91fZQoaAZHQJnRZeWv8qFoB03oA2gIR0Cxqnk/OdGzdX2UKGgGR0CQkIwsXizcaAdN6ANoCEdAsassjZ+QVHV9lChoBkdAlsJ2hM8HOmgHTegDaAhHQLGs21WbPQh1fZQoaAZHQJRD1kPMB6toB03oA2gIR0CxscFWn0kGdX2UKGgGR0CPRBbt7a7FaAdN6ANoCEdAsbHg7muDBnV9lChoBkdAjolOQhfShWgHTegDaAhHQLGytBJZnth1fZQoaAZHQJJKfogV45doB03oA2gIR0CxtWScCo0idX2UKGgGR0CR+s5jH4oJaAdN6ANoCEdAsbt59Cu2Z3V9lChoBkdAisVl3Qla82gHTegDaAhHQLG7l7u2JBR1fZQoaAZHQIbfbErGza9oB03oA2gIR0CxvEmJWNm2dX2UKGgGR0CT2z/X5FgEaAdN6ANoCEdAsb4BVT72tnV9lChoBkdAhYvpoK2KEWgHTegDaAhHQLHDelEqlP91fZQoaAZHQJUZdp8F6iVoB03oA2gIR0Cxw6dcry2AdX2UKGgGR0CKdeEUTL4faAdN6ANoCEdAscTPGXHBDXV9lChoBkdAlMDNtVJcxGgHTegDaAhHQLHHs9Mbm2d1fZQoaAZHQJNEk5NoJzFoB03oA2gIR0CxzNfDk2gndX2UKGgGR0CUkRbwSamXaAdN6ANoCEdAscz1qwhW53V9lChoBkdAg3kIAXEZSGgHTegDaAhHQLHNqzJIUah1fZQoaAZHQJTs9aePJaJoB03oA2gIR0Cxz17HEMspdX2UKGgGR0CMvEjt5UtJaAdN6ANoCEdAsdWIDTz/ZXV9lChoBkdAlcZUdvKlpGgHTegDaAhHQLHVuD3/PxB1fZQoaAZHQJLsvIaLn9xoB03oA2gIR0Cx1t83hn8LdX2UKGgGR0CAS7xaxHG0aAdN6ANoCEdAsdkVt8/lhnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a78396fca87d5111369d16edc18a831309676cc88297f9f7fc6aff7f9317c6
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21cf0d5881ca98e337a1215f002d4c758d12eb5d580125f7f1e3f22bf355a3dc
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc47baa9d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc47baa9dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc47baa9e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc47baa9ee0>", "_build": "<function ActorCriticPolicy._build at 0x7fc47baa9f70>", "forward": "<function ActorCriticPolicy.forward at 0x7fc47ba2f040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc47ba2f0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc47ba2f160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc47ba2f1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc47ba2f280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc47ba2f310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc47ba2f3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc47baa8840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677997228901344452, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADnPM7wCXgZADgW6vywMzD64Xl3ARzlSv7MOWz8/qK++C9oVv3+jLL8nhjc/lkWCvqUCpb99RaLACmBIvil6qz5XXEO/4sYAwHQ2Tz8lfpc9TN/7vp9HHMDdAwy/aeupvGqGGT+w0JY+F6sQPxZzur+urIw/G9YCQBf+pL+dhTJA8hVDvnyRaz+xPxQ/m4yJv6ZLjL8HU7i+PEJKvlq19LwK2KC+JxQFQCywxrziO+8/mwvAP1tnDr7P84w8oOYRPhEfjb9ihpW9yX1wP1h1Xj/9b9W/sNCWPherED9Nvy8/LtaeP0JLEUC3pArA5dhkP2rw6r8Osko/l5ZvPjGMK798qai+r/VuvztZSr4NlyQ8r4ewv8CPBECSRuu+FEROP3dhzT+AiqRAJoMCv9yWxD4Zjoe/4GASPpc1oT+U0CM//W/Vv7DQlj4XqxA/Tb8vP0v4hj7CNca/zDQhv+BnmD9VB8a/r5ABP6y+7z01HEy/ZP2rv6PvEsDUpkm+KBieOw6o879++Y4/a8+lPmowtT+P6uS/QPtzPiE1TT992O4+ur7KvkNDhr+bLD8/3F6BP/1v1b+w0JY+F6sQP02/Lz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC8GEK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAde68vAAAAABtzO2/AAAAACwvy70AAAAA6dTkPwAAAADi+Ha9AAAAAIlf+T8AAAAAMw4kvAAAAAD2WOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJifRNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgODJhD0AAAAANQLZvwAAAADlfHQ9AAAAAC4m4T8AAAAAEZmBPQAAAACmW+w/AAAAAPQAprsAAAAA16vlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALNfzTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICEUYi9AAAAAAYE3L8AAAAA91W3PAAAAAC9U+g/AAAAABIFbj0AAAAA57DvPwAAAACA2PO9AAAAAEz5778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLQU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkZ9xPAAAAADTEeu/AAAAAOJnTrwAAAAAfW/+PwAAAAC1qdA7AAAAAJu72z8AAAAAifjmvQAAAADEpgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQITDxxR2r4qMAWyUTegDjAF0lEdAsQKDxFy7w3V9lChoBkdAiQpfqgRK6GgHTegDaAhHQLECspHqeK91fZQoaAZHQI+E+oP07KdoB03oA2gIR0CxA8TPWxyGdX2UKGgGR0CSAk3C9AX3aAdN6ANoCEdAsQaYZMtbtHV9lChoBkdAl5kWGucME2gHTegDaAhHQLELxeenQ6Z1fZQoaAZHQJMOSeTV2A5oB03oA2gIR0CxC+UzTF2ndX2UKGgGR0CSsZNMGorGaAdN6ANoCEdAsQyXqs2ehHV9lChoBkdAjS93I2fkFWgHTegDaAhHQLEOS88cMmZ1fZQoaAZHQJMxEBikO7RoB03oA2gIR0CxFJZSR8txdX2UKGgGR0CM19g75mAcaAdN6ANoCEdAsRTI8cMmW3V9lChoBkdAiIb8VYZEUmgHTegDaAhHQLEV9Xe3x4J1fZQoaAZHQIo+Zz7uUlloB03oA2gIR0CxGBW3jMmndX2UKGgGR0CEwV6TGHYZaAdN6ANoCEdAsR0mo60Y0nV9lChoBkdAkOmpFb3XZ2gHTegDaAhHQLEdRLS/j811fZQoaAZHQJhDagL7XQNoB03oA2gIR0CxHfT9GZuydX2UKGgGR0CT1BLKV6eHaAdN6ANoCEdAsR+ziT+vQnV9lChoBkdAkxRVk1/DtWgHTegDaAhHQLEm531BdD91fZQoaAZHQJHCw4JeE7JoB03oA2gIR0CxJwYbjtG/dX2UKGgGR0CT3q2St/4JaAdN6ANoCEdAsSe2tKZlWnV9lChoBkdAkXfB1xKg7GgHTegDaAhHQLEpY9wWFex1fZQoaAZHQJUIEmiQDFJoB03oA2gIR0CxLlUlqrR0dX2UKGgGR0CQk02jwhGIaAdN6ANoCEdAsS5z2lEZznV9lChoBkdAlqI9nTRYzWgHTegDaAhHQLEvIdDpkf91fZQoaAZHQJgWQ3Ov+wVoB03oA2gIR0CxMOiXD3uedX2UKGgGR0CQ+WAWBSUDaAdN6ANoCEdAsTgagVXV9XV9lChoBkdAltB/XGwRoWgHTegDaAhHQLE4OJp35et1fZQoaAZHQJEwd6iTMaFoB03oA2gIR0CxOOik9ECvdX2UKGgGR0CU1PvKEFnqaAdN6ANoCEdAsTqX7O3UhHV9lChoBkdAh1vMIE8q4GgHTegDaAhHQLFADwwj+rF1fZQoaAZHQJIvOBbwBo5oB03oA2gIR0CxQD1U2kzodX2UKGgGR0CRLAN6PbPAaAdN6ANoCEdAsUFkmplz2nV9lChoBkdAikHX9R77bmgHTegDaAhHQLFE8QFLWZt1fZQoaAZHQJEK2ZiNKiBoB03oA2gIR0CxS5y0BwMqdX2UKGgGR0CTI98OTaCdaAdN6ANoCEdAsUu627Wd3HV9lChoBkdAkIhzB/I8yWgHTegDaAhHQLFMa2Xb/Ot1fZQoaAZHQJO1hYlpoK5oB03oA2gIR0CxThM7hegMdX2UKGgGR0CQgdbdJrckaAdN6ANoCEdAsVLlYV6/qXV9lChoBkdAkt4Ihpxm02gHTegDaAhHQLFTA96kZaV1fZQoaAZHQJKYuarmyPdoB03oA2gIR0CxVA/mHP/rdX2UKGgGR0CVgpjTKDChaAdN6ANoCEdAsVbBPSDyv3V9lChoBkdAk0tiQLeANGgHTegDaAhHQLFchSwW30B1fZQoaAZHQH7ciRjjJdVoB03oA2gIR0CxXKHs5XEJdX2UKGgGR0CS/Ikadc0MaAdN6ANoCEdAsV1XmfXf7HV9lChoBkdAj+AAWzniemgHTegDaAhHQLFfEqKP4mF1fZQoaAZHQJMY0uTRplBoB03oA2gIR0CxZINpM6BAdX2UKGgGR0CO5y8Gs3hoaAdN6ANoCEdAsWSwV2zOX3V9lChoBkdAiUBzIeYD1WgHTegDaAhHQLFlx/Firkt1fZQoaAZHQJPIND+irT9oB03oA2gIR0CxaJvtQbdadX2UKGgGR0CUQfxJd0JXaAdN6ANoCEdAsW2wsWfseHV9lChoBkdAk+RWIsRQJ2gHTegDaAhHQLFtzqfOD8N1fZQoaAZHQJG6mkVN5+poB03oA2gIR0CxboJlz2eydX2UKGgGR0COXIJLM9r5aAdN6ANoCEdAsXAzpkf9xnV9lChoBkdAkZ6/EKmbb2gHTegDaAhHQLF2V9mYjSp1fZQoaAZHQJPiUXJo0yhoB03oA2gIR0CxdolYhdMTdX2UKGgGR0CSKqlRP421aAdN6ANoCEdAsXer/6wdKnV9lChoBkdAhLyKraM72mgHTegDaAhHQLF5yol2Ned1fZQoaAZHQJT8PD7655JoB03oA2gIR0Cxfq04WDYidX2UKGgGR0CWv5tXPqs2aAdN6ANoCEdAsX7J6KLsKXV9lChoBkdAlqpMJdB0IWgHTegDaAhHQLF/eTQVsUJ1fZQoaAZHQJVTALUkOZtoB03oA2gIR0CxgS9qUNaydX2UKGgGR0CGDZ7w8W9EaAdN6ANoCEdAsYgV0nw5N3V9lChoBkdAiOI51/2Cd2gHTegDaAhHQLGIR93KSxJ1fZQoaAZHQJN5ycI7eVNoB03oA2gIR0CxiRxKlHjIdX2UKGgGR0CIxYqoZQ54aAdN6ANoCEdAsYrK1LJ0XHV9lChoBkdAlGQEpVjqfWgHTegDaAhHQLGPnwj+rEN1fZQoaAZHQJNBvjWCmMxoB03oA2gIR0Cxj7+WfK6ndX2UKGgGR0COGk8FpwjuaAdN6ANoCEdAsZBz9n9NvnV9lChoBkdAj8jBjWkJr2gHTegDaAhHQLGSIaFEiMZ1fZQoaAZHQJeXWk1uR9xoB03oA2gIR0CxmUPhMrVfdX2UKGgGR0CB6hO9FnZkaAdN6ANoCEdAsZlhdmg8KXV9lChoBkdAk0hLXtjTa2gHTegDaAhHQLGaFIk7fYV1fZQoaAZHQJRoYpz90ihoB03oA2gIR0Cxm8/acqe9dX2UKGgGR0CU7/7RfF72aAdN6ANoCEdAsaC/bJwKjXV9lChoBkdAmGzgrhBJI2gHTegDaAhHQLGg3ZuQ6p51fZQoaAZHQJckivECNjtoB03oA2gIR0CxoYi0rsjWdX2UKGgGR0CXEWv60pmVaAdN6ANoCEdAsaOiLn9vTHV9lChoBkdAlSM9EkSmImgHTegDaAhHQLGqW4Wk8A91fZQoaAZHQJnRZeWv8qFoB03oA2gIR0Cxqnk/OdGzdX2UKGgGR0CQkIwsXizcaAdN6ANoCEdAsassjZ+QVHV9lChoBkdAlsJ2hM8HOmgHTegDaAhHQLGs21WbPQh1fZQoaAZHQJRD1kPMB6toB03oA2gIR0CxscFWn0kGdX2UKGgGR0CPRBbt7a7FaAdN6ANoCEdAsbHg7muDBnV9lChoBkdAjolOQhfShWgHTegDaAhHQLGytBJZnth1fZQoaAZHQJJKfogV45doB03oA2gIR0CxtWScCo0idX2UKGgGR0CR+s5jH4oJaAdN6ANoCEdAsbt59Cu2Z3V9lChoBkdAisVl3Qla82gHTegDaAhHQLG7l7u2JBR1fZQoaAZHQIbfbErGza9oB03oA2gIR0CxvEmJWNm2dX2UKGgGR0CT2z/X5FgEaAdN6ANoCEdAsb4BVT72tnV9lChoBkdAhYvpoK2KEWgHTegDaAhHQLHDelEqlP91fZQoaAZHQJUZdp8F6iVoB03oA2gIR0Cxw6dcry2AdX2UKGgGR0CKdeEUTL4faAdN6ANoCEdAscTPGXHBDXV9lChoBkdAlMDNtVJcxGgHTegDaAhHQLHHs9Mbm2d1fZQoaAZHQJNEk5NoJzFoB03oA2gIR0CxzNfDk2gndX2UKGgGR0CUkRbwSamXaAdN6ANoCEdAscz1qwhW53V9lChoBkdAg3kIAXEZSGgHTegDaAhHQLHNqzJIUah1fZQoaAZHQJTs9aePJaJoB03oA2gIR0Cxz17HEMspdX2UKGgGR0CMvEjt5UtJaAdN6ANoCEdAsdWIDTz/ZXV9lChoBkdAlcZUdvKlpGgHTegDaAhHQLHVuD3/PxB1fZQoaAZHQJLsvIaLn9xoB03oA2gIR0Cx1t83hn8LdX2UKGgGR0CAS7xaxHG0aAdN6ANoCEdAsdkVt8/lhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (996 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 915.8302657914988, "std_reward": 240.26827375811567, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T07:57:59.250880"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bba23d50721da953978b43b55e184998023b8adbbfc2930603f0dfac25b79e11
3
+ size 2136