a2c-PandaReachDense-v2 / config.json
emmashe15's picture
Initial commit
787cf8a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000019EE5DCE4C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000019EE5DCCF00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678767093660918200, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjExEOlxQcm9ncmFtRGF0YVxhbmFjb25kYTNcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAI1y5PgLGzrz1ig4/I1y5PgLGzrz1ig4/I1y5PgLGzrz1ig4/I1y5PgLGzrz1ig4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAv1EnvQpqo70+pWS/aFn3vi8oPD+fKIO/YMy4vwa4pb+YpVW/DTXbP6Zlrj99cz0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAjXLk+AsbOvPWKDj9gmJ+70YOAuyzZ9rsjXLk+AsbOvPWKDj9gmJ+70YOAuyzZ9rsjXLk+AsbOvPWKDj9gmJ+70YOAuyzZ9rsjXLk+AsbOvPWKDj9gmJ+70YOAuyzZ9ruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36203107 -0.0252409 0.5568078 ]\n [ 0.36203107 -0.0252409 0.5568078 ]\n [ 0.36203107 -0.0252409 0.5568078 ]\n [ 0.36203107 -0.0252409 0.5568078 ]]", "desired_goal": "[[-0.04084944 -0.0797921 -0.8931464 ]\n [-0.483104 0.73498815 -1.0246772 ]\n [-1.443737 -1.2946784 -0.834558 ]\n [ 1.7125565 1.3624771 0.74004346]]", "observation": "[[ 0.36203107 -0.0252409 0.5568078 -0.00487046 -0.00392196 -0.00753321]\n [ 0.36203107 -0.0252409 0.5568078 -0.00487046 -0.00392196 -0.00753321]\n [ 0.36203107 -0.0252409 0.5568078 -0.00487046 -0.00392196 -0.00753321]\n [ 0.36203107 -0.0252409 0.5568078 -0.00487046 -0.00392196 -0.00753321]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9Zk9POY2Mz2EpFM+a7ljPQ/cqj2K4hU+caB7PaOtAb7cSsQ9YC8LvuaAj72ITaY8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01157235 0.04375353 0.20668226]\n [ 0.05559675 0.08342754 0.14637199]\n [ 0.06143231 -0.12663893 0.09584591]\n [-0.13592291 -0.07007007 0.02030064]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5J6u7lhs5L+UhpRSlIwBbJRLMowBdJRHQKZgVuCwr2B1fZQoaAZoCWgPQwhPeXQjLCrav5SGlFKUaBVLMmgWR0CmYBKoqCpWdX2UKGgGaAloD0MI3UWYolwa5L+UhpRSlGgVSzJoFkdApl/VajesP3V9lChoBmgJaA9DCLd546Qw79q/lIaUUpRoFUsyaBZHQKZfmXD3ueB1fZQoaAZoCWgPQwhj8DDtm/vmv5SGlFKUaBVLMmgWR0CmYZaqKgqWdX2UKGgGaAloD0MI1y/YDduW5L+UhpRSlGgVSzJoFkdApmFSciGFjHV9lChoBmgJaA9DCJ8ENufgmdu/lIaUUpRoFUsyaBZHQKZhFTOxB3R1fZQoaAZoCWgPQwg+CAH5Eqrjv5SGlFKUaBVLMmgWR0CmYNk0iyIIdX2UKGgGaAloD0MIn7DEA8qm1b+UhpRSlGgVSzJoFkdApmLAEpy6tnV9lChoBmgJaA9DCCHLgok/Cuq/lIaUUpRoFUsyaBZHQKZie9qUNa11fZQoaAZoCWgPQwhHVKhuLv7Qv5SGlFKUaBVLMmgWR0CmYj6cI7eVdX2UKGgGaAloD0MIG55eKcsQ2L+UhpRSlGgVSzJoFkdApmH6nP3SKHV9lChoBmgJaA9DCKKyYU1lUdy/lIaUUpRoFUsyaBZHQKZj8WnjyWl1fZQoaAZoCWgPQwjBxYoaTMPbv5SGlFKUaBVLMmgWR0CmY60x20RfdX2UKGgGaAloD0MIgnUcP1Qa17+UhpRSlGgVSzJoFkdApmN3+S8rZ3V9lChoBmgJaA9DCDyFXKlnQd6/lIaUUpRoFUsyaBZHQKZjM/oq0+l1fZQoaAZoCWgPQwijPPNy2H3fv5SGlFKUaBVLMmgWR0CmZRqjJuEVdX2UKGgGaAloD0MIC+vGuyPj5L+UhpRSlGgVSzJoFkdApmTWaz/p+3V9lChoBmgJaA9DCCxGXWvv0+O/lIaUUpRoFUsyaBZHQKZkmSyt3fR1fZQoaAZoCWgPQwj61LFK6ZnYv5SGlFKUaBVLMmgWR0CmZFUtqYZ3dX2UKGgGaAloD0MIHebLC7CP2b+UhpRSlGgVSzJoFkdApmZn/7zkIXV9lChoBmgJaA9DCBfVIqKYvNG/lIaUUpRoFUsyaBZHQKZmI8fV7Qd1fZQoaAZoCWgPQwg3N6YnLPHVv5SGlFKUaBVLMmgWR0CmZeaJQ+EAdX2UKGgGaAloD0MIq+tQTUlW5r+UhpRSlGgVSzJoFkdApmWiij+Jg3V9lChoBmgJaA9DCL1uERjrG9a/lIaUUpRoFUsyaBZHQKZnmWZ7Xxx1fZQoaAZoCWgPQwgTgeofRDLdv5SGlFKUaBVLMmgWR0CmZ1UulGgBdX2UKGgGaAloD0MIZXCUvDpH5b+UhpRSlGgVSzJoFkdApmcX8AJb+3V9lChoBmgJaA9DCBIVqpuLv92/lIaUUpRoFUsyaBZHQKZm0/D+BH11fZQoaAZoCWgPQwgoucMmMnPQv5SGlFKUaBVLMmgWR0CmaMCyyD7JdX2UKGgGaAloD0MI0/caguMy2r+UhpRSlGgVSzJoFkdApmh8er+5v3V9lChoBmgJaA9DCDDWNzC5UdO/lIaUUpRoFUsyaBZHQKZoQQzUI9l1fZQoaAZoCWgPQwimDYelgR/Yv5SGlFKUaBVLMmgWR0CmZ/0Nrj5sdX2UKGgGaAloD0MI8kOlETP747+UhpRSlGgVSzJoFkdApmnrp9qk/XV9lChoBmgJaA9DCDvikA2ki9i/lIaUUpRoFUsyaBZHQKZpp2/SH/N1fZQoaAZoCWgPQwjlfRzNkZXiv5SGlFKUaBVLMmgWR0CmaWoxYaHcdX2UKGgGaAloD0MIRSv3ArPC4b+UhpRSlGgVSzJoFkdApmkmMl1KXnV9lChoBmgJaA9DCJwxzAna5Nm/lIaUUpRoFUsyaBZHQKZrJRfnfVJ1fZQoaAZoCWgPQwhWC+wxkVLnv5SGlFKUaBVLMmgWR0CmauDgAIY4dX2UKGgGaAloD0MIw/UoXI9C47+UhpRSlGgVSzJoFkdApmqjoZAIIHV9lChoBmgJaA9DCFn5ZTBGpOO/lIaUUpRoFUsyaBZHQKZqX6JqIrR1fZQoaAZoCWgPQwgJUil2NI7vv5SGlFKUaBVLMmgWR0CmbFyvkiljdX2UKGgGaAloD0MIVyQmqOFb57+UhpRSlGgVSzJoFkdApmwYd4mkWXV9lChoBmgJaA9DCCTQYFPnUdG/lIaUUpRoFUsyaBZHQKZr3Qla8pV1fZQoaAZoCWgPQwhs0Jfe/lzWv5SGlFKUaBVLMmgWR0Cma5kKVpsXdX2UKGgGaAloD0MIVRfwMsPG7b+UhpRSlGgVSzJoFkdApm1/t6X0G3V9lChoBmgJaA9DCAX9hR4x+uO/lIaUUpRoFUsyaBZHQKZtO3+dbxF1fZQoaAZoCWgPQwiit3h4z4Hdv5SGlFKUaBVLMmgWR0CmbP5BLPD6dX2UKGgGaAloD0MINXugFRiy3r+UhpRSlGgVSzJoFkdApmy6QgcLjXV9lChoBmgJaA9DCNO/JJUpZui/lIaUUpRoFUsyaBZHQKZuqaqCHyp1fZQoaAZoCWgPQwhYOEnzx7TZv5SGlFKUaBVLMmgWR0CmbmVyeZogdX2UKGgGaAloD0MIyLWhYpy/37+UhpRSlGgVSzJoFkdApm4oNAkcCHV9lChoBmgJaA9DCIRhwJKrWOa/lIaUUpRoFUsyaBZHQKZt7DVH4Gl1fZQoaAZoCWgPQwiKAn0iTxLqv5SGlFKUaBVLMmgWR0Cmb8sZxaPkdX2UKGgGaAloD0MIuoYZGk+E5b+UhpRSlGgVSzJoFkdApm+O56MR6HV9lChoBmgJaA9DCExtqYO8HvO/lIaUUpRoFUsyaBZHQKZvUakyk9F1fZQoaAZoCWgPQwhJ1XYTfFPrv5SGlFKUaBVLMmgWR0Cmbw2qDK5kdX2UKGgGaAloD0MIAp8fRggP67+UhpRSlGgVSzJoFkdApnD8SkCV8nV9lChoBmgJaA9DCMRDGD+N++C/lIaUUpRoFUsyaBZHQKZwuBJZnth1fZQoaAZoCWgPQwhB9KRMamjmv5SGlFKUaBVLMmgWR0CmcHrTx5LRdX2UKGgGaAloD0MI3o/bL5+s6b+UhpRSlGgVSzJoFkdApnA21MM7VHV9lChoBmgJaA9DCDYhrTHohNa/lIaUUpRoFUsyaBZHQKZyNEuQIUt1fZQoaAZoCWgPQwhOmZtvRPfrv5SGlFKUaBVLMmgWR0CmcfATh5xBdX2UKGgGaAloD0MIdNGQ8SiV57+UhpRSlGgVSzJoFkdApnGy1RceKnV9lChoBmgJaA9DCATidf2CXe2/lIaUUpRoFUsyaBZHQKZxbtYSxqx1fZQoaAZoCWgPQwguVz82yQ/rv5SGlFKUaBVLMmgWR0Cmc1U6HTJAdX2UKGgGaAloD0MIRWRYxRuZ5L+UhpRSlGgVSzJoFkdApnMRAhStNnV9lChoBmgJaA9DCGXEBaBRuuK/lIaUUpRoFUsyaBZHQKZy28hcJMR1fZQoaAZoCWgPQwgS+MPPfw/qv5SGlFKUaBVLMmgWR0CmcpfJV81GdX2UKGgGaAloD0MIFHZR9MBH7L+UhpRSlGgVSzJoFkdApnR+nuRcNnV9lChoBmgJaA9DCPyp8dJN4uK/lIaUUpRoFUsyaBZHQKZ0Ombb1yx1fZQoaAZoCWgPQwhmFMstrQbqv5SGlFKUaBVLMmgWR0Cmc/0oa1kUdX2UKGgGaAloD0MIDw9h/DTu4b+UhpRSlGgVSzJoFkdApnO5KUVzqHV9lChoBmgJaA9DCNBFQ8ajVOa/lIaUUpRoFUsyaBZHQKZ1oBZpztF1fZQoaAZoCWgPQwgRHm0csRbkv5SGlFKUaBVLMmgWR0CmdVveYUnHdX2UKGgGaAloD0MIFEAxsmSO2r+UhpRSlGgVSzJoFkdApnUen/DLsHV9lChoBmgJaA9DCPtbAvBPqeC/lIaUUpRoFUsyaBZHQKZ02qDK5kN1fZQoaAZoCWgPQwh2M6MfDafgv5SGlFKUaBVLMmgWR0CmdtErPMSsdX2UKGgGaAloD0MIHqhTHt0I3b+UhpRSlGgVSzJoFkdApnaM8zQ/o3V9lChoBmgJaA9DCE64V+atuuG/lIaUUpRoFUsyaBZHQKZ2T7TDwYt1fZQoaAZoCWgPQwib5bLROT/Yv5SGlFKUaBVLMmgWR0CmdhO1fE4vdX2UKGgGaAloD0MIlSwnofSF6L+UhpRSlGgVSzJoFkdApngCm/FirnV9lChoBmgJaA9DCEt2bATiddy/lIaUUpRoFUsyaBZHQKZ3vmPo3aV1fZQoaAZoCWgPQwgr2bERiFfov5SGlFKUaBVLMmgWR0Cmd4kr5IpZdX2UKGgGaAloD0MIychZ2NMO3L+UhpRSlGgVSzJoFkdApndFLL6k7HV9lChoBmgJaA9DCKQZi6azk9q/lIaUUpRoFUsyaBZHQKZ5NBRhttR1fZQoaAZoCWgPQwhi+IiYEknav5SGlFKUaBVLMmgWR0CmeO/cer+6dX2UKGgGaAloD0MI+7FJfsQv47+UhpRSlGgVSzJoFkdApniyneizs3V9lChoBmgJaA9DCEVlw5rKotu/lIaUUpRoFUsyaBZHQKZ4bp7kXDZ1fZQoaAZoCWgPQwj8HB8tzhjOv5SGlFKUaBVLMmgWR0CmelVWbPQfdX2UKGgGaAloD0MIHXQJh97i27+UhpRSlGgVSzJoFkdApnoRHmRvFXV9lChoBmgJaA9DCLHBwkmaP9m/lIaUUpRoFUsyaBZHQKZ509/z8P51fZQoaAZoCWgPQwjZ6Qd1kULev5SGlFKUaBVLMmgWR0CmeY/g75mAdX2UKGgGaAloD0MICtejcD0K4b+UhpRSlGgVSzJoFkdApnuwzpHI63V9lChoBmgJaA9DCGHe40wTtuC/lIaUUpRoFUsyaBZHQKZ7bJaJQ+F1fZQoaAZoCWgPQwgbg04IHXTjv5SGlFKUaBVLMmgWR0Cmey9YGMXKdX2UKGgGaAloD0MID5pd91Yk4r+UhpRSlGgVSzJoFkdApnrrWPLgXXV9lChoBmgJaA9DCA8om3KFd9S/lIaUUpRoFUsyaBZHQKZ8+iD/VAl1fZQoaAZoCWgPQwhLPnYXKKnjv5SGlFKUaBVLMmgWR0CmfLXpGFzudX2UKGgGaAloD0MI0GG+vAD7xr+UhpRSlGgVSzJoFkdApnx4qqfe13V9lChoBmgJaA9DCMpOP6iLFOm/lIaUUpRoFUsyaBZHQKZ8OpAD7qJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Windows-10-10.0.25267-SP0 10.0.25267", "Python": "3.9.13", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}