Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +5 -5
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.35 +/- 0.37
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0abfab0f0ff08fa2f02ffcf9c45eebfc8d0d388c276d06b2efa7818b3b0a5535
|
3 |
+
size 108010
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,19 +46,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000019EE5DCE4C0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000019EE5DCCF00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1678750966087429600,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVfAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjExEOlxQcm9ncmFtRGF0YVxhbmFjb25kYTNcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7Qj9Ph3yw7pD/Q4/7Qj9Ph3yw7pD/Q4/7Qj9Ph3yw7pD/Q4/7Qj9Ph3yw7pD/Q4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuSc9vmR597xu7qU/sPmTP4y3lTyas6Y/nyhFPqUekz+31S8+yKjTP2oFnz8Xeae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLvtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLvtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLvtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.49420872 -0.00149495 0.55855197]\n [ 0.49420872 -0.00149495 0.55855197]\n [ 0.49420872 -0.00149495 0.55855197]\n [ 0.49420872 -0.00149495 0.55855197]]",
|
60 |
+
"desired_goal": "[[-0.18472184 -0.03020925 1.2963388 ]\n [ 1.1560574 0.018276 1.302356 ]\n [ 0.19253777 1.1493727 0.1717137 ]\n [ 1.6535883 1.2423527 -1.3083829 ]]",
|
61 |
+
"observation": "[[ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]\n [ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]\n [ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]\n [ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA74GYPVVsFD4eylk9C5oYPPsvxj3xJlA+JFoMPtytaL1byj0+edzcvRsoYbzMAWw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.07446658 0.1449445 0.05317127]\n [ 0.00931407 0.0967712 0.20327355]\n [ 0.13706261 -0.05680643 0.18534224]\n [-0.10784239 -0.01374247 0.2304756 ]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1hpK7UV0AcCUhpRSlIwBbJRLMowBdJRHQKYB8q814xF1fZQoaAZoCWgPQwjHvI44ZMPyv5SGlFKUaBVLMmgWR0CmAbE1EVnFdX2UKGgGaAloD0MIO420VN4O/b+UhpRSlGgVSzJoFkdApgF5tvXK83V9lChoBmgJaA9DCLQEGQEVjvq/lIaUUpRoFUsyaBZHQKYBPTWoWHl1fZQoaAZoCWgPQwifxyjPvJzuv5SGlFKUaBVLMmgWR0CmAxLPldTpdX2UKGgGaAloD0MICK2HLxOF8r+UhpRSlGgVSzJoFkdApgLRVXFLnXV9lChoBmgJaA9DCBjt8UI6vPW/lIaUUpRoFUsyaBZHQKYCmdaMaS91fZQoaAZoCWgPQwiKHCJuTuX9v5SGlFKUaBVLMmgWR0CmAl1VHWjHdX2UKGgGaAloD0MI1nH8UGmE9L+UhpRSlGgVSzJoFkdApgQ1VPva13V9lChoBmgJaA9DCMcQABx79u6/lIaUUpRoFUsyaBZHQKYD89r433p1fZQoaAZoCWgPQwhCzZAqitcDwJSGlFKUaBVLMmgWR0CmA7WpqASWdX2UKGgGaAloD0MIwf9WsmMj67+UhpRSlGgVSzJoFkdApgN5KDkELnV9lChoBmgJaA9DCCWuY1xxEQHAlIaUUpRoFUsyaBZHQKYFZuogmqp1fZQoaAZoCWgPQwgSSl8IOW/7v5SGlFKUaBVLMmgWR0CmBSVv/BFedX2UKGgGaAloD0MIUtSZe0hYAcCUhpRSlGgVSzJoFkdApgTpjYqXnnV9lChoBmgJaA9DCItSQrCqnvC/lIaUUpRoFUsyaBZHQKYErQw9JSR1fZQoaAZoCWgPQwh56/zbZf/xv5SGlFKUaBVLMmgWR0CmBoiCJ40NdX2UKGgGaAloD0MIPPVIg9saBsCUhpRSlGgVSzJoFkdApgZHCAMDwHV9lChoBmgJaA9DCD4FwHgGjQHAlIaUUpRoFUsyaBZHQKYGB4mCyyF1fZQoaAZoCWgPQwh9zXLZ6Jztv5SGlFKUaBVLMmgWR0CmBcsINVindX2UKGgGaAloD0MIm6vmOSJf97+UhpRSlGgVSzJoFkdApgfUNMGorHV9lChoBmgJaA9DCDxKJTyhF/G/lIaUUpRoFUsyaBZHQKYHkrq+rU91fZQoaAZoCWgPQwgtYAK37mbyv5SGlFKUaBVLMmgWR0CmB1M8PnSwdX2UKGgGaAloD0MIyM1wAz7/BsCUhpRSlGgVSzJoFkdApgcWus90R3V9lChoBmgJaA9DCGcng6Pklfi/lIaUUpRoFUsyaBZHQKYI9q9oN/h1fZQoaAZoCWgPQwiOW8zPDe0DwJSGlFKUaBVLMmgWR0CmCLU1ZTybdX2UKGgGaAloD0MI5q26DtWU5r+UhpRSlGgVSzJoFkdApgh1tuUD+3V9lChoBmgJaA9DCDGW6ZeIFwDAlIaUUpRoFUsyaBZHQKYIOTV2A5J1fZQoaAZoCWgPQwjxaOOItTjxv5SGlFKUaBVLMmgWR0CmChhEa2nbdX2UKGgGaAloD0MI9YQlHlD2+7+UhpRSlGgVSzJoFkdApgnWymhufnV9lChoBmgJaA9DCMRDGD+NmwPAlIaUUpRoFUsyaBZHQKYJl0voNd91fZQoaAZoCWgPQwhIwylz8w0GwJSGlFKUaBVLMmgWR0CmCVrKeTV2dX2UKGgGaAloD0MIIjMXuDwmEMCUhpRSlGgVSzJoFkdApgs6WmgrY3V9lChoBmgJaA9DCAn7dhIR/va/lIaUUpRoFUsyaBZHQKYK+OBlMAZ1fZQoaAZoCWgPQwj3V4/7VgsHwJSGlFKUaBVLMmgWR0CmCrlh5PdmdX2UKGgGaAloD0MIwcWKGkzD+r+UhpRSlGgVSzJoFkdApgp84HX2/XV9lChoBmgJaA9DCAFQxY1bTPu/lIaUUpRoFUsyaBZHQKYMWtVaOgh1fZQoaAZoCWgPQwgpzHucaSIJwJSGlFKUaBVLMmgWR0CmDBlbVz6rdX2UKGgGaAloD0MInvASnPogAMCUhpRSlGgVSzJoFkdApgvZ3NcGDHV9lChoBmgJaA9DCJC7CFOUi/+/lIaUUpRoFUsyaBZHQKYLnVtoBaN1fZQoaAZoCWgPQwiiJ2VSQxvyv5SGlFKUaBVLMmgWR0CmDXZqM3qBdX2UKGgGaAloD0MIjPSidr9KA8CUhpRSlGgVSzJoFkdApg089nscAHV9lChoBmgJaA9DCEWhZd0/Fv2/lIaUUpRoFUsyaBZHQKYM/Xf642F1fZQoaAZoCWgPQwitiQW+olsAwJSGlFKUaBVLMmgWR0CmDMD2i+L4dX2UKGgGaAloD0MInz2XqUnwA8CUhpRSlGgVSzJoFkdApg6XvMKTjnV9lChoBmgJaA9DCKSmXUwzfQTAlIaUUpRoFUsyaBZHQKYOVkKeCkJ1fZQoaAZoCWgPQwgP7zmwHOH4v5SGlFKUaBVLMmgWR0CmDhbEP1+RdX2UKGgGaAloD0MIrhBWYwnr+r+UhpRSlGgVSzJoFkdApg3iQkona3V9lChoBmgJaA9DCHO4VnvYiw3AlIaUUpRoFUsyaBZHQKYPuE/Spit1fZQoaAZoCWgPQwj4p1SJsjfnv5SGlFKUaBVLMmgWR0CmD3bVz6rOdX2UKGgGaAloD0MIdNGQ8Sj1B8CUhpRSlGgVSzJoFkdApg8/W4EwFnV9lChoBmgJaA9DCESGVbyROfm/lIaUUpRoFUsyaBZHQKYPAtozvZ11fZQoaAZoCWgPQwiMLJljeVfsv5SGlFKUaBVLMmgWR0CmENnjhky2dX2UKGgGaAloD0MIDXGsi9vo+7+UhpRSlGgVSzJoFkdAphCYaYNRWXV9lChoBmgJaA9DCM7F3/YECe6/lIaUUpRoFUsyaBZHQKYQWOsDGLl1fZQoaAZoCWgPQwjLorCLokcKwJSGlFKUaBVLMmgWR0CmEBxplBhQdX2UKGgGaAloD0MIJetwdJXu67+UhpRSlGgVSzJoFkdAphH3hfjS5XV9lChoBmgJaA9DCFMFo5I6AfW/lIaUUpRoFUsyaBZHQKYRtgvUSZl1fZQoaAZoCWgPQwjgvDjx1Y7uv5SGlFKUaBVLMmgWR0CmEXaNdZ7pdX2UKGgGaAloD0MI4GQbuAPVB8CUhpRSlGgVSzJoFkdAphE6DAaegHV9lChoBmgJaA9DCLRzmgXanf6/lIaUUpRoFUsyaBZHQKYTHmTTvy91fZQoaAZoCWgPQwjmQA+1bRjrv5SGlFKUaBVLMmgWR0CmEtzq0MPSdX2UKGgGaAloD0MIj26ERUU8A8CUhpRSlGgVSzJoFkdAphKdbFCLM3V9lChoBmgJaA9DCNz2Peqvl/+/lIaUUpRoFUsyaBZHQKYSaOnVG1B1fZQoaAZoCWgPQwiMTSuFQK71v5SGlFKUaBVLMmgWR0CmFD/tpmEodX2UKGgGaAloD0MI3PC76Zad+r+UhpRSlGgVSzJoFkdAphP+c6Nly3V9lChoBmgJaA9DCD9xAP2+nwDAlIaUUpRoFUsyaBZHQKYTvvUjLSx1fZQoaAZoCWgPQwjP91PjpTsJwJSGlFKUaBVLMmgWR0CmE4JztCzDdX2UKGgGaAloD0MI+N9KdmyE/7+UhpRSlGgVSzJoFkdAphVibhFVk3V9lChoBmgJaA9DCEs5X+y9OPm/lIaUUpRoFUsyaBZHQKYVIPQOWjZ1fZQoaAZoCWgPQwieJF0z+eb2v5SGlFKUaBVLMmgWR0CmFOF1jiGWdX2UKGgGaAloD0MIh/vIrUk357+UhpRSlGgVSzJoFkdAphSs+qzZ6HV9lChoBmgJaA9DCHpx4qsdxfe/lIaUUpRoFUsyaBZHQKYWgyWzF/B1fZQoaAZoCWgPQwg6kWCqmbXvv5SGlFKUaBVLMmgWR0CmFkGrsByTdX2UKGgGaAloD0MIvaYHBaVIAsCUhpRSlGgVSzJoFkdAphYCLS/j83V9lChoBmgJaA9DCM7jMJi/QvG/lIaUUpRoFUsyaBZHQKYVxavA44p1fZQoaAZoCWgPQwiZnrDEA0r3v5SGlFKUaBVLMmgWR0CmF6Tn7pFDdX2UKGgGaAloD0MI2V92Tx62BsCUhpRSlGgVSzJoFkdAphdjbcoH9nV9lChoBmgJaA9DCLN+MzFdiP+/lIaUUpRoFUsyaBZHQKYXI+9rXUZ1fZQoaAZoCWgPQwhZorPMIpT4v5SGlFKUaBVLMmgWR0CmFupFb3XadX2UKGgGaAloD0MIcF0xI7w9+L+UhpRSlGgVSzJoFkdAphi+e4Cp33V9lChoBmgJaA9DCEj6tIr+MALAlIaUUpRoFUsyaBZHQKYYhQHAymB1fZQoaAZoCWgPQwggCJChY8f+v5SGlFKUaBVLMmgWR0CmGEWDQJHBdX2UKGgGaAloD0MIBHP0+L3N8L+UhpRSlGgVSzJoFkdAphgJAfMfR3V9lChoBmgJaA9DCHXpX5LKlPe/lIaUUpRoFUsyaBZHQKYZ3oAXEZR1fZQoaAZoCWgPQwhnmrD9ZIzuv5SGlFKUaBVLMmgWR0CmGZ0F8ohIdX2UKGgGaAloD0MI/vM0YJD09r+UhpRSlGgVSzJoFkdAphlljurp7nV9lChoBmgJaA9DCGCsb2By4/6/lIaUUpRoFUsyaBZHQKYZKQ2dd3V1fZQoaAZoCWgPQwimgLT/ARb+v5SGlFKUaBVLMmgWR0CmGwBPj4pMdX2UKGgGaAloD0MI3lflQuUf9r+UhpRSlGgVSzJoFkdAphq+1WsBAHV9lChoBmgJaA9DCDz6X65FSwrAlIaUUpRoFUsyaBZHQKYaf1cMVlB1fZQoaAZoCWgPQwilvizt1Nzxv5SGlFKUaBVLMmgWR0CmGkLVnVXndX2UKGgGaAloD0MI/n4xW7Jq8L+UhpRSlGgVSzJoFkdAphwajQAuI3V9lChoBmgJaA9DCEDBxYoajPi/lIaUUpRoFUsyaBZHQKYb2RL9MsZ1fZQoaAZoCWgPQwhNnx1wXREFwJSGlFKUaBVLMmgWR0CmG6GUwBYFdX2UKGgGaAloD0MIeR7cnbWbC8CUhpRSlGgVSzJoFkdAphtlE1EVnHV9lChoBmgJaA9DCDpAMEeP3+y/lIaUUpRoFUsyaBZHQKYdQMMI/qx1fZQoaAZoCWgPQwjGFRdH5Sb0v5SGlFKUaBVLMmgWR0CmHP9JBgNPdX2UKGgGaAloD0MISl0yjpEs8b+UhpRSlGgVSzJoFkdAphy/yoXKsHV9lChoBmgJaA9DCDF6bqErkfO/lIaUUpRoFUsyaBZHQKYch2h7E511ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b10d3643205e2fc3b3246b96af1ff95e8b018f3ca78bc65779c57e17c810a594
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abad5941c083d5fb3e3ac41ba8b091325ae1a56a1356b32b4cea5bbdc47bc3c3
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS:
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch: 1.13.
|
5 |
-
- GPU Enabled:
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Windows-10-10.0.25267-SP0 10.0.25267
|
2 |
+
- Python: 3.9.13
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.5
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f898791e4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8987996a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678029217377939821, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVYvoPtPMET0EOiE/VYvoPtPMET0EOiE/VYvoPtPMET0EOiE/VYvoPtPMET0EOiE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjJLKP381eT/gSqA/wxLGPz3no7++tOC+mFbLP76JC79/NTe/rmyQv4INrb5/h0k+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABVi+g+08wRPQQ6IT8Fdoq8ZpP8O4Ps0rpVi+g+08wRPQQ6IT8Fdoq8ZpP8O4Ps0rpVi+g+08wRPQQ6IT8Fdoq8ZpP8O4Ps0rpVi+g+08wRPQQ6IT8Fdoq8ZpP8O4Ps0rqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45418802 0.03559573 0.6297915 ]\n [0.45418802 0.03559573 0.6297915 ]\n [0.45418802 0.03559573 0.6297915 ]\n [0.45418802 0.03559573 0.6297915 ]]", "desired_goal": "[[ 1.5825973 0.97347254 1.252285 ]\n [ 1.5474476 -1.2804943 -0.43887895]\n [ 1.5885801 -0.5450705 -0.71566004]\n [-1.1283166 -0.33799368 0.19680594]]", "observation": "[[ 0.45418802 0.03559573 0.6297915 -0.01690198 0.007708 -0.00160922]\n [ 0.45418802 0.03559573 0.6297915 -0.01690198 0.007708 -0.00160922]\n [ 0.45418802 0.03559573 0.6297915 -0.01690198 0.007708 -0.00160922]\n [ 0.45418802 0.03559573 0.6297915 -0.01690198 0.007708 -0.00160922]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyEqcvcmj+L1E21g+d++3vUXsEL5J8oo+yqqZupqwCj6IMPU8eoPtPQepzb1t2C09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07631451 -0.12140615 0.21177393]\n [-0.08981221 -0.1415263 0.27137974]\n [-0.00117239 0.1354393 0.02993037]\n [ 0.11597343 -0.10042005 0.04244273]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG0esxafgDsCUhpRSlIwBbJRLMowBdJRHQKq7Zdepn6F1fZQoaAZoCWgPQwhmLnB5rNkIwJSGlFKUaBVLMmgWR0CqutqtozvadX2UKGgGaAloD0MIwjV39L8cC8CUhpRSlGgVSzJoFkdAqrpTM1TBInV9lChoBmgJaA9DCG4w1GGFuxDAlIaUUpRoFUsyaBZHQKq5+XyAhB91fZQoaAZoCWgPQwgHfH4YIVwKwJSGlFKUaBVLMmgWR0CqvGgQYk3TdX2UKGgGaAloD0MIRWXDmsrCBsCUhpRSlGgVSzJoFkdAqrvcXgtOEnV9lChoBmgJaA9DCKzkY3eB0hbAlIaUUpRoFUsyaBZHQKq7VMOf/WF1fZQoaAZoCWgPQwiwHCEDefYLwJSGlFKUaBVLMmgWR0Cquvplz2eydX2UKGgGaAloD0MIbO7of7m2DMCUhpRSlGgVSzJoFkdAqr1yZrpJPXV9lChoBmgJaA9DCM+goX+CCwjAlIaUUpRoFUsyaBZHQKq85rXUYsN1fZQoaAZoCWgPQwgUlQ1rKisOwJSGlFKUaBVLMmgWR0CqvF8gyM1kdX2UKGgGaAloD0MIQUZAhSNoA8CUhpRSlGgVSzJoFkdAqrwFBIFvAHV9lChoBmgJaA9DCJW1TfG4qArAlIaUUpRoFUsyaBZHQKq+g2NNrTJ1fZQoaAZoCWgPQwguq7AZ4CIHwJSGlFKUaBVLMmgWR0CqvfiQLeANdX2UKGgGaAloD0MIY7g6AOKeEMCUhpRSlGgVSzJoFkdAqr1w/X5FgHV9lChoBmgJaA9DCCeh9IWQYxPAlIaUUpRoFUsyaBZHQKq9FsTFl051fZQoaAZoCWgPQwg42nHD76b/v5SGlFKUaBVLMmgWR0Cqv6eA3DNydX2UKGgGaAloD0MIKqkT0EQ4AcCUhpRSlGgVSzJoFkdAqr8byhBZ6nV9lChoBmgJaA9DCFMGDmjpChHAlIaUUpRoFUsyaBZHQKq+lDb8FZB1fZQoaAZoCWgPQwiHUnsRbUccwJSGlFKUaBVLMmgWR0CqvjnhbW3CdX2UKGgGaAloD0MIw2UVNgOcC8CUhpRSlGgVSzJoFkdAqsCznzQNTnV9lChoBmgJaA9DCHb6QV2k0BXAlIaUUpRoFUsyaBZHQKrAJ/NJOFh1fZQoaAZoCWgPQwgsf74tWIoRwJSGlFKUaBVLMmgWR0Cqv6COvMbFdX2UKGgGaAloD0MI3QcgtYnTGMCUhpRSlGgVSzJoFkdAqr9GRzRx+HV9lChoBmgJaA9DCFx1HaopiQfAlIaUUpRoFUsyaBZHQKrBxljEvTR1fZQoaAZoCWgPQwjDZ+vgYF8UwJSGlFKUaBVLMmgWR0CqwTrf1pTNdX2UKGgGaAloD0MI3jzVITdDFMCUhpRSlGgVSzJoFkdAqsCzqjafz3V9lChoBmgJaA9DCL2PozmycgbAlIaUUpRoFUsyaBZHQKrAWWD6Fdt1fZQoaAZoCWgPQwijQJ/Ik2QKwJSGlFKUaBVLMmgWR0Cqwt8OkLx7dX2UKGgGaAloD0MIyotMwK+xDMCUhpRSlGgVSzJoFkdAqsJTrC3w1HV9lChoBmgJaA9DCEfIQJ5d/gXAlIaUUpRoFUsyaBZHQKrBzJcxCY11fZQoaAZoCWgPQwjlgF1NnpIPwJSGlFKUaBVLMmgWR0CqwXJD3M6jdX2UKGgGaAloD0MIGEM50a6CB8CUhpRSlGgVSzJoFkdAqsPsyN4qw3V9lChoBmgJaA9DCIwtBDkoARTAlIaUUpRoFUsyaBZHQKrDYRvm5lR1fZQoaAZoCWgPQwitTWN7LagMwJSGlFKUaBVLMmgWR0CqwtnnU2DQdX2UKGgGaAloD0MIC7WmecdpDsCUhpRSlGgVSzJoFkdAqsKAAOrhi3V9lChoBmgJaA9DCG6Kx0W1CA7AlIaUUpRoFUsyaBZHQKrE9PldTpB1fZQoaAZoCWgPQwgEHa1qSScZwJSGlFKUaBVLMmgWR0CqxGlKK509dX2UKGgGaAloD0MIcv4mFCLwG8CUhpRSlGgVSzJoFkdAqsPh0yP+43V9lChoBmgJaA9DCPJc34eDxAfAlIaUUpRoFUsyaBZHQKrDh4NZvDR1fZQoaAZoCWgPQwjqymd5HjwPwJSGlFKUaBVLMmgWR0Cqxhrz5GjLdX2UKGgGaAloD0MIZTiez4AqEsCUhpRSlGgVSzJoFkdAqsWPTG5tnHV9lChoBmgJaA9DCPlp3JvfMArAlIaUUpRoFUsyaBZHQKrFCJAMUh51fZQoaAZoCWgPQwioUx7dCEsMwJSGlFKUaBVLMmgWR0CqxK5Bsyi3dX2UKGgGaAloD0MIjniymxmNGsCUhpRSlGgVSzJoFkdAqscgnWrfcnV9lChoBmgJaA9DCOf9f5ww4QnAlIaUUpRoFUsyaBZHQKrGlQfp2U11fZQoaAZoCWgPQwgkJT0MrW4SwJSGlFKUaBVLMmgWR0Cqxg15rxiHdX2UKGgGaAloD0MIWoEhq1uNF8CUhpRSlGgVSzJoFkdAqsWzIcR15nV9lChoBmgJaA9DCEVnmUUolhvAlIaUUpRoFUsyaBZHQKrIR5zHS4R1fZQoaAZoCWgPQwhPO/w1WSMPwJSGlFKUaBVLMmgWR0Cqx7xWkrPMdX2UKGgGaAloD0MIETgSaLBJAcCUhpRSlGgVSzJoFkdAqsc13GGVRnV9lChoBmgJaA9DCMtN1NLcuhrAlIaUUpRoFUsyaBZHQKrG25Jbt7d1fZQoaAZoCWgPQwjg9ZmzPsUJwJSGlFKUaBVLMmgWR0CqyVlev6j4dX2UKGgGaAloD0MIURa+vtY1FMCUhpRSlGgVSzJoFkdAqsjNsDW9UXV9lChoBmgJaA9DCJ29M9qqJATAlIaUUpRoFUsyaBZHQKrIRh99c8l1fZQoaAZoCWgPQwhy3CkdrM8SwJSGlFKUaBVLMmgWR0Cqx+vNVzZIdX2UKGgGaAloD0MIwAgaM4naBMCUhpRSlGgVSzJoFkdAqsqJ1zQu3HV9lChoBmgJaA9DCEYL0Laa1QDAlIaUUpRoFUsyaBZHQKrJ/htLteF1fZQoaAZoCWgPQwi1UgjkEqcQwJSGlFKUaBVLMmgWR0CqyXcqOLiudX2UKGgGaAloD0MIJZUp5iDoGMCUhpRSlGgVSzJoFkdAqskdShrWRXV9lChoBmgJaA9DCKZCPBIvfxTAlIaUUpRoFUsyaBZHQKrLnm6Gxlh1fZQoaAZoCWgPQwgRpiiXxi8GwJSGlFKUaBVLMmgWR0CqyxK9wm3OdX2UKGgGaAloD0MI4lzDDI0nDsCUhpRSlGgVSzJoFkdAqsqLKHO8kHV9lChoBmgJaA9DCCIzF7g8ZhjAlIaUUpRoFUsyaBZHQKrKMQyylep1fZQoaAZoCWgPQwgS3bOu0RIUwJSGlFKUaBVLMmgWR0CqzJsTviLmdX2UKGgGaAloD0MIQ5CDEmaaBcCUhpRSlGgVSzJoFkdAqswPp+tr9HV9lChoBmgJaA9DCAppjUEnpAjAlIaUUpRoFUsyaBZHQKrLiCROk+J1fZQoaAZoCWgPQwjUDKmieNUSwJSGlFKUaBVLMmgWR0Cqyy47aIvbdX2UKGgGaAloD0MIVcITev2JEsCUhpRSlGgVSzJoFkdAqs2mBnSOR3V9lChoBmgJaA9DCA98DFacChPAlIaUUpRoFUsyaBZHQKrNGlY2bXp1fZQoaAZoCWgPQwj0o+GUuVkFwJSGlFKUaBVLMmgWR0CqzJLq+rU9dX2UKGgGaAloD0MIUtZvJqarEcCUhpRSlGgVSzJoFkdAqsw4j4YaYXV9lChoBmgJaA9DCL6jxoSY6wbAlIaUUpRoFUsyaBZHQKrPQYmb9ZR1fZQoaAZoCWgPQwjopWJjXtcVwJSGlFKUaBVLMmgWR0CqzrhBAv+PdX2UKGgGaAloD0MI5EnSNZOvB8CUhpRSlGgVSzJoFkdAqs4xXMhX83V9lChoBmgJaA9DCDtypDMwMgfAlIaUUpRoFUsyaBZHQKrN17E5yU91fZQoaAZoCWgPQwhwW1t4XioOwJSGlFKUaBVLMmgWR0Cq0Px6v7m/dX2UKGgGaAloD0MIuyU5YFcTBcCUhpRSlGgVSzJoFkdAqtBxS1mapnV9lChoBmgJaA9DCKvsuyL4nwPAlIaUUpRoFUsyaBZHQKrP6mBOHnF1fZQoaAZoCWgPQwiLTpZa7zcFwJSGlFKUaBVLMmgWR0Cqz5CwKSgXdX2UKGgGaAloD0MINh0B3Cy+DcCUhpRSlGgVSzJoFkdAqtL+TPjXF3V9lChoBmgJaA9DCOIEptO6zRDAlIaUUpRoFUsyaBZHQKrSc1YQrc11fZQoaAZoCWgPQwgceSCySHMFwJSGlFKUaBVLMmgWR0Cq0e2FnIyTdX2UKGgGaAloD0MIH7sLlBS4CMCUhpRSlGgVSzJoFkdAqtGT5ylvZXV9lChoBmgJaA9DCNx/ZDp0ShnAlIaUUpRoFUsyaBZHQKrUvQiRnvl1fZQoaAZoCWgPQwiW0cjnFY8WwJSGlFKUaBVLMmgWR0Cq1DI11nuidX2UKGgGaAloD0MIA3rhzoVRDMCUhpRSlGgVSzJoFkdAqtOr/GVAzHV9lChoBmgJaA9DCHE7NCxGnQXAlIaUUpRoFUsyaBZHQKrTUpOvdM11fZQoaAZoCWgPQwhdp5GWyqsawJSGlFKUaBVLMmgWR0Cq1oEeIVM3dX2UKGgGaAloD0MIzmxX6IN1EMCUhpRSlGgVSzJoFkdAqtX2IInjQ3V9lChoBmgJaA9DCK6cvTPaGhPAlIaUUpRoFUsyaBZHQKrVb0UXYUZ1fZQoaAZoCWgPQwimmllLAekRwJSGlFKUaBVLMmgWR0Cq1RYuK4x2dX2UKGgGaAloD0MIKLnDJjJDH8CUhpRSlGgVSzJoFkdAqtgr+NtIkXV9lChoBmgJaA9DCNMyUu+pHAbAlIaUUpRoFUsyaBZHQKrXoHKwIMV1fZQoaAZoCWgPQwisN2qF6csRwJSGlFKUaBVLMmgWR0Cq1xjwx33YdX2UKGgGaAloD0MIfNP02QEXD8CUhpRSlGgVSzJoFkdAqta+loDgZXV9lChoBmgJaA9DCKyrArUY/BXAlIaUUpRoFUsyaBZHQKrZLh2GIsR1fZQoaAZoCWgPQwim8naE03ISwJSGlFKUaBVLMmgWR0Cq2KJr1uiwdX2UKGgGaAloD0MIWB8PfXcLC8CUhpRSlGgVSzJoFkdAqtga17Y023V9lChoBmgJaA9DCNYfYRiwVBXAlIaUUpRoFUsyaBZHQKrXwIToMa11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000019EE5DCE4C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000019EE5DCCF00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678750966087429600, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjExEOlxQcm9ncmFtRGF0YVxhbmFjb25kYTNcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7Qj9Ph3yw7pD/Q4/7Qj9Ph3yw7pD/Q4/7Qj9Ph3yw7pD/Q4/7Qj9Ph3yw7pD/Q4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuSc9vmR597xu7qU/sPmTP4y3lTyas6Y/nyhFPqUekz+31S8+yKjTP2oFnz8Xeae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLvtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLvtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLvtCP0+HfLDukP9Dj9UhkE8RUPSOR8LWLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.49420872 -0.00149495 0.55855197]\n [ 0.49420872 -0.00149495 0.55855197]\n [ 0.49420872 -0.00149495 0.55855197]\n [ 0.49420872 -0.00149495 0.55855197]]", "desired_goal": "[[-0.18472184 -0.03020925 1.2963388 ]\n [ 1.1560574 0.018276 1.302356 ]\n [ 0.19253777 1.1493727 0.1717137 ]\n [ 1.6535883 1.2423527 -1.3083829 ]]", "observation": "[[ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]\n [ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]\n [ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]\n [ 4.94208723e-01 -1.49494747e-03 5.58551967e-01 1.18118115e-02\n 4.01044410e-04 -3.29656131e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA74GYPVVsFD4eylk9C5oYPPsvxj3xJlA+JFoMPtytaL1byj0+edzcvRsoYbzMAWw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07446658 0.1449445 0.05317127]\n [ 0.00931407 0.0967712 0.20327355]\n [ 0.13706261 -0.05680643 0.18534224]\n [-0.10784239 -0.01374247 0.2304756 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1hpK7UV0AcCUhpRSlIwBbJRLMowBdJRHQKYB8q814xF1fZQoaAZoCWgPQwjHvI44ZMPyv5SGlFKUaBVLMmgWR0CmAbE1EVnFdX2UKGgGaAloD0MIO420VN4O/b+UhpRSlGgVSzJoFkdApgF5tvXK83V9lChoBmgJaA9DCLQEGQEVjvq/lIaUUpRoFUsyaBZHQKYBPTWoWHl1fZQoaAZoCWgPQwifxyjPvJzuv5SGlFKUaBVLMmgWR0CmAxLPldTpdX2UKGgGaAloD0MICK2HLxOF8r+UhpRSlGgVSzJoFkdApgLRVXFLnXV9lChoBmgJaA9DCBjt8UI6vPW/lIaUUpRoFUsyaBZHQKYCmdaMaS91fZQoaAZoCWgPQwiKHCJuTuX9v5SGlFKUaBVLMmgWR0CmAl1VHWjHdX2UKGgGaAloD0MI1nH8UGmE9L+UhpRSlGgVSzJoFkdApgQ1VPva13V9lChoBmgJaA9DCMcQABx79u6/lIaUUpRoFUsyaBZHQKYD89r433p1fZQoaAZoCWgPQwhCzZAqitcDwJSGlFKUaBVLMmgWR0CmA7WpqASWdX2UKGgGaAloD0MIwf9WsmMj67+UhpRSlGgVSzJoFkdApgN5KDkELnV9lChoBmgJaA9DCCWuY1xxEQHAlIaUUpRoFUsyaBZHQKYFZuogmqp1fZQoaAZoCWgPQwgSSl8IOW/7v5SGlFKUaBVLMmgWR0CmBSVv/BFedX2UKGgGaAloD0MIUtSZe0hYAcCUhpRSlGgVSzJoFkdApgTpjYqXnnV9lChoBmgJaA9DCItSQrCqnvC/lIaUUpRoFUsyaBZHQKYErQw9JSR1fZQoaAZoCWgPQwh56/zbZf/xv5SGlFKUaBVLMmgWR0CmBoiCJ40NdX2UKGgGaAloD0MIPPVIg9saBsCUhpRSlGgVSzJoFkdApgZHCAMDwHV9lChoBmgJaA9DCD4FwHgGjQHAlIaUUpRoFUsyaBZHQKYGB4mCyyF1fZQoaAZoCWgPQwh9zXLZ6Jztv5SGlFKUaBVLMmgWR0CmBcsINVindX2UKGgGaAloD0MIm6vmOSJf97+UhpRSlGgVSzJoFkdApgfUNMGorHV9lChoBmgJaA9DCDxKJTyhF/G/lIaUUpRoFUsyaBZHQKYHkrq+rU91fZQoaAZoCWgPQwgtYAK37mbyv5SGlFKUaBVLMmgWR0CmB1M8PnSwdX2UKGgGaAloD0MIyM1wAz7/BsCUhpRSlGgVSzJoFkdApgcWus90R3V9lChoBmgJaA9DCGcng6Pklfi/lIaUUpRoFUsyaBZHQKYI9q9oN/h1fZQoaAZoCWgPQwiOW8zPDe0DwJSGlFKUaBVLMmgWR0CmCLU1ZTybdX2UKGgGaAloD0MI5q26DtWU5r+UhpRSlGgVSzJoFkdApgh1tuUD+3V9lChoBmgJaA9DCDGW6ZeIFwDAlIaUUpRoFUsyaBZHQKYIOTV2A5J1fZQoaAZoCWgPQwjxaOOItTjxv5SGlFKUaBVLMmgWR0CmChhEa2nbdX2UKGgGaAloD0MI9YQlHlD2+7+UhpRSlGgVSzJoFkdApgnWymhufnV9lChoBmgJaA9DCMRDGD+NmwPAlIaUUpRoFUsyaBZHQKYJl0voNd91fZQoaAZoCWgPQwhIwylz8w0GwJSGlFKUaBVLMmgWR0CmCVrKeTV2dX2UKGgGaAloD0MIIjMXuDwmEMCUhpRSlGgVSzJoFkdApgs6WmgrY3V9lChoBmgJaA9DCAn7dhIR/va/lIaUUpRoFUsyaBZHQKYK+OBlMAZ1fZQoaAZoCWgPQwj3V4/7VgsHwJSGlFKUaBVLMmgWR0CmCrlh5PdmdX2UKGgGaAloD0MIwcWKGkzD+r+UhpRSlGgVSzJoFkdApgp84HX2/XV9lChoBmgJaA9DCAFQxY1bTPu/lIaUUpRoFUsyaBZHQKYMWtVaOgh1fZQoaAZoCWgPQwgpzHucaSIJwJSGlFKUaBVLMmgWR0CmDBlbVz6rdX2UKGgGaAloD0MInvASnPogAMCUhpRSlGgVSzJoFkdApgvZ3NcGDHV9lChoBmgJaA9DCJC7CFOUi/+/lIaUUpRoFUsyaBZHQKYLnVtoBaN1fZQoaAZoCWgPQwiiJ2VSQxvyv5SGlFKUaBVLMmgWR0CmDXZqM3qBdX2UKGgGaAloD0MIjPSidr9KA8CUhpRSlGgVSzJoFkdApg089nscAHV9lChoBmgJaA9DCEWhZd0/Fv2/lIaUUpRoFUsyaBZHQKYM/Xf642F1fZQoaAZoCWgPQwitiQW+olsAwJSGlFKUaBVLMmgWR0CmDMD2i+L4dX2UKGgGaAloD0MInz2XqUnwA8CUhpRSlGgVSzJoFkdApg6XvMKTjnV9lChoBmgJaA9DCKSmXUwzfQTAlIaUUpRoFUsyaBZHQKYOVkKeCkJ1fZQoaAZoCWgPQwgP7zmwHOH4v5SGlFKUaBVLMmgWR0CmDhbEP1+RdX2UKGgGaAloD0MIrhBWYwnr+r+UhpRSlGgVSzJoFkdApg3iQkona3V9lChoBmgJaA9DCHO4VnvYiw3AlIaUUpRoFUsyaBZHQKYPuE/Spit1fZQoaAZoCWgPQwj4p1SJsjfnv5SGlFKUaBVLMmgWR0CmD3bVz6rOdX2UKGgGaAloD0MIdNGQ8Sj1B8CUhpRSlGgVSzJoFkdApg8/W4EwFnV9lChoBmgJaA9DCESGVbyROfm/lIaUUpRoFUsyaBZHQKYPAtozvZ11fZQoaAZoCWgPQwiMLJljeVfsv5SGlFKUaBVLMmgWR0CmENnjhky2dX2UKGgGaAloD0MIDXGsi9vo+7+UhpRSlGgVSzJoFkdAphCYaYNRWXV9lChoBmgJaA9DCM7F3/YECe6/lIaUUpRoFUsyaBZHQKYQWOsDGLl1fZQoaAZoCWgPQwjLorCLokcKwJSGlFKUaBVLMmgWR0CmEBxplBhQdX2UKGgGaAloD0MIJetwdJXu67+UhpRSlGgVSzJoFkdAphH3hfjS5XV9lChoBmgJaA9DCFMFo5I6AfW/lIaUUpRoFUsyaBZHQKYRtgvUSZl1fZQoaAZoCWgPQwjgvDjx1Y7uv5SGlFKUaBVLMmgWR0CmEXaNdZ7pdX2UKGgGaAloD0MI4GQbuAPVB8CUhpRSlGgVSzJoFkdAphE6DAaegHV9lChoBmgJaA9DCLRzmgXanf6/lIaUUpRoFUsyaBZHQKYTHmTTvy91fZQoaAZoCWgPQwjmQA+1bRjrv5SGlFKUaBVLMmgWR0CmEtzq0MPSdX2UKGgGaAloD0MIj26ERUU8A8CUhpRSlGgVSzJoFkdAphKdbFCLM3V9lChoBmgJaA9DCNz2Peqvl/+/lIaUUpRoFUsyaBZHQKYSaOnVG1B1fZQoaAZoCWgPQwiMTSuFQK71v5SGlFKUaBVLMmgWR0CmFD/tpmEodX2UKGgGaAloD0MI3PC76Zad+r+UhpRSlGgVSzJoFkdAphP+c6Nly3V9lChoBmgJaA9DCD9xAP2+nwDAlIaUUpRoFUsyaBZHQKYTvvUjLSx1fZQoaAZoCWgPQwjP91PjpTsJwJSGlFKUaBVLMmgWR0CmE4JztCzDdX2UKGgGaAloD0MI+N9KdmyE/7+UhpRSlGgVSzJoFkdAphVibhFVk3V9lChoBmgJaA9DCEs5X+y9OPm/lIaUUpRoFUsyaBZHQKYVIPQOWjZ1fZQoaAZoCWgPQwieJF0z+eb2v5SGlFKUaBVLMmgWR0CmFOF1jiGWdX2UKGgGaAloD0MIh/vIrUk357+UhpRSlGgVSzJoFkdAphSs+qzZ6HV9lChoBmgJaA9DCHpx4qsdxfe/lIaUUpRoFUsyaBZHQKYWgyWzF/B1fZQoaAZoCWgPQwg6kWCqmbXvv5SGlFKUaBVLMmgWR0CmFkGrsByTdX2UKGgGaAloD0MIvaYHBaVIAsCUhpRSlGgVSzJoFkdAphYCLS/j83V9lChoBmgJaA9DCM7jMJi/QvG/lIaUUpRoFUsyaBZHQKYVxavA44p1fZQoaAZoCWgPQwiZnrDEA0r3v5SGlFKUaBVLMmgWR0CmF6Tn7pFDdX2UKGgGaAloD0MI2V92Tx62BsCUhpRSlGgVSzJoFkdAphdjbcoH9nV9lChoBmgJaA9DCLN+MzFdiP+/lIaUUpRoFUsyaBZHQKYXI+9rXUZ1fZQoaAZoCWgPQwhZorPMIpT4v5SGlFKUaBVLMmgWR0CmFupFb3XadX2UKGgGaAloD0MIcF0xI7w9+L+UhpRSlGgVSzJoFkdAphi+e4Cp33V9lChoBmgJaA9DCEj6tIr+MALAlIaUUpRoFUsyaBZHQKYYhQHAymB1fZQoaAZoCWgPQwggCJChY8f+v5SGlFKUaBVLMmgWR0CmGEWDQJHBdX2UKGgGaAloD0MIBHP0+L3N8L+UhpRSlGgVSzJoFkdAphgJAfMfR3V9lChoBmgJaA9DCHXpX5LKlPe/lIaUUpRoFUsyaBZHQKYZ3oAXEZR1fZQoaAZoCWgPQwhnmrD9ZIzuv5SGlFKUaBVLMmgWR0CmGZ0F8ohIdX2UKGgGaAloD0MI/vM0YJD09r+UhpRSlGgVSzJoFkdAphlljurp7nV9lChoBmgJaA9DCGCsb2By4/6/lIaUUpRoFUsyaBZHQKYZKQ2dd3V1fZQoaAZoCWgPQwimgLT/ARb+v5SGlFKUaBVLMmgWR0CmGwBPj4pMdX2UKGgGaAloD0MI3lflQuUf9r+UhpRSlGgVSzJoFkdAphq+1WsBAHV9lChoBmgJaA9DCDz6X65FSwrAlIaUUpRoFUsyaBZHQKYaf1cMVlB1fZQoaAZoCWgPQwilvizt1Nzxv5SGlFKUaBVLMmgWR0CmGkLVnVXndX2UKGgGaAloD0MI/n4xW7Jq8L+UhpRSlGgVSzJoFkdAphwajQAuI3V9lChoBmgJaA9DCEDBxYoajPi/lIaUUpRoFUsyaBZHQKYb2RL9MsZ1fZQoaAZoCWgPQwhNnx1wXREFwJSGlFKUaBVLMmgWR0CmG6GUwBYFdX2UKGgGaAloD0MIeR7cnbWbC8CUhpRSlGgVSzJoFkdAphtlE1EVnHV9lChoBmgJaA9DCDpAMEeP3+y/lIaUUpRoFUsyaBZHQKYdQMMI/qx1fZQoaAZoCWgPQwjGFRdH5Sb0v5SGlFKUaBVLMmgWR0CmHP9JBgNPdX2UKGgGaAloD0MISl0yjpEs8b+UhpRSlGgVSzJoFkdAphy/yoXKsHV9lChoBmgJaA9DCDF6bqErkfO/lIaUUpRoFUsyaBZHQKYch2h7E511ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Windows-10-10.0.25267-SP0 10.0.25267", "Python": "3.9.13", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3464932241477072, "std_reward": 0.3661349865772537, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T08:31:53.083652"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40fbbcedd37afdf700700dc4888e8c72c986b3ecf09f436f6426e52bf6a8e21c
|
3 |
size 3056
|