File size: 2,048 Bytes
cd7f881 8d2e25f cd7f881 8d2e25f cd7f881 8d2e25f cd7f881 8d2e25f cd7f881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: nandovallec/whisper-tiny-bg-l
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-medium-order
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-order
This model is a fine-tuned version of [nandovallec/whisper-tiny-bg-l](https://huggingface.co/nandovallec/whisper-tiny-bg-l) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0173
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.624 | 3.0 | 5 | 1.4084 | 111.7647 |
| 0.5102 | 6.0 | 10 | 0.5733 | 43.1373 |
| 0.2173 | 8.78 | 15 | 0.3225 | 31.3725 |
| 0.0178 | 11.29 | 20 | 0.2035 | 27.4510 |
| 0.0138 | 14.0 | 25 | 0.1143 | 21.5686 |
| 0.036 | 17.0 | 30 | 0.0603 | 3.9216 |
| 0.0296 | 20.0 | 35 | 0.0366 | 1.9608 |
| 0.0074 | 22.59 | 40 | 0.0250 | 1.9608 |
| 0.0014 | 25.1 | 45 | 0.0191 | 0.0 |
| 0.0051 | 28.0 | 50 | 0.0173 | 0.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|