File size: 3,287 Bytes
b9f2a19 c878a72 b9f2a19 4faf701 b9f2a19 4faf701 b9f2a19 4faf701 b9f2a19 4faf701 b9f2a19 4faf701 b9f2a19 4faf701 b9f2a19 4faf701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
base_model: nandovallec/whisper-tiny-bg-l
model-index:
- name: whisper-tiny-order
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-order
This model is a fine-tuned version of [nandovallec/whisper-tiny-bg-l](https://huggingface.co/nandovallec/whisper-tiny-bg-l) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0015
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 150
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5799 | 5.0 | 5 | 1.8414 | 116.3934 |
| 0.2647 | 10.0 | 10 | 0.7719 | 61.4754 |
| 0.1199 | 15.0 | 15 | 0.3593 | 34.4262 |
| 0.063 | 20.0 | 20 | 0.1827 | 18.8525 |
| 0.0257 | 25.0 | 25 | 0.0710 | 4.9180 |
| 0.0103 | 30.0 | 30 | 0.0294 | 0.8197 |
| 0.0045 | 35.0 | 35 | 0.0149 | 0.0 |
| 0.0028 | 40.0 | 40 | 0.0094 | 0.0 |
| 0.0019 | 45.0 | 45 | 0.0064 | 0.0 |
| 0.0014 | 50.0 | 50 | 0.0048 | 0.0 |
| 0.0011 | 55.0 | 55 | 0.0038 | 0.0 |
| 0.0009 | 60.0 | 60 | 0.0032 | 0.0 |
| 0.0008 | 65.0 | 65 | 0.0028 | 0.0 |
| 0.0007 | 70.0 | 70 | 0.0025 | 0.0 |
| 0.0006 | 75.0 | 75 | 0.0023 | 0.0 |
| 0.0006 | 80.0 | 80 | 0.0022 | 0.0 |
| 0.0006 | 85.0 | 85 | 0.0021 | 0.0 |
| 0.0005 | 90.0 | 90 | 0.0020 | 0.0 |
| 0.0005 | 95.0 | 95 | 0.0019 | 0.0 |
| 0.0005 | 100.0 | 100 | 0.0018 | 0.0 |
| 0.0005 | 105.0 | 105 | 0.0017 | 0.0 |
| 0.0005 | 110.0 | 110 | 0.0017 | 0.0 |
| 0.0004 | 115.0 | 115 | 0.0017 | 0.0 |
| 0.0004 | 120.0 | 120 | 0.0016 | 0.0 |
| 0.0004 | 125.0 | 125 | 0.0016 | 0.0 |
| 0.0004 | 130.0 | 130 | 0.0016 | 0.0 |
| 0.0004 | 135.0 | 135 | 0.0016 | 0.0 |
| 0.0004 | 140.0 | 140 | 0.0015 | 0.0 |
| 0.0004 | 145.0 | 145 | 0.0015 | 0.0 |
| 0.0004 | 150.0 | 150 | 0.0015 | 0.0 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|