File size: 28,937 Bytes
84cfa23
2e25a9a
84cfa23
 
 
 
 
2e25a9a
84cfa23
 
 
 
2e25a9a
 
 
84cfa23
 
2e25a9a
 
 
 
 
 
 
 
 
 
84cfa23
2e25a9a
84cfa23
 
 
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
 
84cfa23
 
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
 
2e25a9a
 
84cfa23
2e25a9a
 
 
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
 
 
84cfa23
2e25a9a
 
84cfa23
2e25a9a
84cfa23
2e25a9a
 
84cfa23
2e25a9a
84cfa23
 
2e25a9a
 
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
 
 
2e25a9a
 
 
84cfa23
 
2e25a9a
84cfa23
2e25a9a
 
84cfa23
 
2e25a9a
84cfa23
 
 
 
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
 
 
 
 
2e25a9a
 
 
84cfa23
2e25a9a
 
 
 
84cfa23
 
 
2e25a9a
84cfa23
 
 
 
2e25a9a
 
84cfa23
2e25a9a
 
84cfa23
2e25a9a
 
84cfa23
 
 
2e25a9a
 
 
84cfa23
 
2e25a9a
 
 
 
 
 
 
 
 
84cfa23
 
2e25a9a
 
 
84cfa23
 
2e25a9a
84cfa23
 
 
 
2e25a9a
 
84cfa23
2e25a9a
 
84cfa23
2e25a9a
 
84cfa23
2e25a9a
84cfa23
2e25a9a
 
84cfa23
 
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
 
84cfa23
2e25a9a
 
84cfa23
2e25a9a
84cfa23
 
 
2e25a9a
84cfa23
2e25a9a
 
84cfa23
 
2e25a9a
 
 
84cfa23
2e25a9a
 
 
84cfa23
2e25a9a
 
84cfa23
 
2e25a9a
84cfa23
2e25a9a
84cfa23
 
2e25a9a
84cfa23
2e25a9a
 
84cfa23
2e25a9a
84cfa23
2e25a9a
 
84cfa23
 
 
 
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
 
2e25a9a
84cfa23
 
2e25a9a
84cfa23
2e25a9a
 
 
 
 
 
 
 
84cfa23
 
 
2e25a9a
84cfa23
 
2e25a9a
84cfa23
 
 
2e25a9a
 
 
 
 
 
 
 
 
 
 
 
 
 
84cfa23
 
 
 
 
 
 
 
 
 
2e25a9a
 
 
 
 
 
 
 
84cfa23
 
2e25a9a
84cfa23
2e25a9a
 
84cfa23
2e25a9a
84cfa23
2e25a9a
84cfa23
 
 
 
2e25a9a
 
84cfa23
 
 
 
 
2e25a9a
 
 
84cfa23
 
 
2e25a9a
84cfa23
 
 
2e25a9a
 
 
 
 
 
84cfa23
 
 
2e25a9a
84cfa23
2e25a9a
84cfa23
 
2e25a9a
84cfa23
2e25a9a
 
 
84cfa23
2e25a9a
84cfa23
 
 
 
2e25a9a
 
 
84cfa23
 
 
 
 
 
2e25a9a
 
84cfa23
 
 
 
 
 
 
 
 
2e25a9a
84cfa23
 
 
 
 
 
 
 
 
 
2e25a9a
 
84cfa23
 
 
 
 
 
 
 
2e25a9a
 
84cfa23
 
 
 
 
 
 
 
 
 
 
2e25a9a
 
84cfa23
 
 
 
 
 
 
 
2e25a9a
84cfa23
 
 
 
 
 
2e25a9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

'\nCopied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py\nupdate imports to use \'triton_pre_mlir\'\n\n*Experimental* implementation of FlashAttention in Triton.\nTested with triton==2.0.0.dev20221202.\nTriton 2.0 has a new backend (MLIR) but seems like it doesn\'t yet work for head dimensions\nother than 64:\nhttps://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207\nWe\'ll update this implementation with the new Triton backend once this is fixed.\n\nWe use the FlashAttention implementation from Phil Tillet a starting point.\nhttps://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py\n\nChanges:\n- Implement both causal and non-causal attention.\n- Implement both self-attention and cross-attention.\n- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.\n- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.\n- Support attention bias.\n- Speed up the forward pass a bit, and only store the LSE instead of m and l.\n- Make the backward for d=128 much faster by reducing register spilling.\n- Optionally parallelize the backward pass across seqlen_k, to deal with the case of\nsmall batch size * nheads.\n\nCaution:\n- This is an *experimental* implementation. The forward pass should be quite robust but\nI\'m not 100% sure that the backward pass doesn\'t have race conditions (due to the Triton compiler).\n- This implementation has only been tested on A100.\n- If you plan to use headdim other than 64 and 128, you should test for race conditions\n(due to the Triton compiler), as done in tests/test_flash_attn.py\n"test_flash_attn_triton_race_condition". I\'ve tested and fixed many race conditions\nfor different head dimensions (40, 48, 64, 128, 80, 88, 96), but I\'m still not 100% confident\nthat there are none left for other head dimensions.\n\nDifferences between this Triton version and the CUDA version:\n- Triton version doesn\'t support dropout.\n- Triton forward is generally faster than CUDA forward, while Triton backward is\ngenerally slower than CUDA backward. Overall Triton forward + backward is slightly slower\nthan CUDA forward + backward.\n- Triton version doesn\'t support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).\n- Triton version supports attention bias, while CUDA version doesn\'t.\n'
import math
import torch
import triton_pre_mlir as triton
import triton_pre_mlir.language as tl

@triton.heuristics({'EVEN_M': (lambda args: ((args['seqlen_q'] % args['BLOCK_M']) == 0)), 'EVEN_N': (lambda args: ((args['seqlen_k'] % args['BLOCK_N']) == 0)), 'EVEN_HEADDIM': (lambda args: (args['headdim'] == args['BLOCK_HEADDIM']))})
@triton.jit
def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = (off_hb // nheads)
    off_h = (off_hb % nheads)
    offs_m = ((start_m * BLOCK_M) + tl.arange(0, BLOCK_M))
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    q_ptrs = (((Q + (off_b * stride_qb)) + (off_h * stride_qh)) + ((offs_m[:, None] * stride_qm) + offs_d[None, :]))
    k_ptrs = (((K + (off_b * stride_kb)) + (off_h * stride_kh)) + ((offs_n[:, None] * stride_kn) + offs_d[None, :]))
    v_ptrs = (((V + (off_b * stride_vb)) + (off_h * stride_vh)) + ((offs_n[:, None] * stride_vn) + offs_d[None, :]))
    if (BIAS_TYPE == 'vector'):
        b_ptrs = (((Bias + (off_b * stride_bb)) + (off_h * stride_bh)) + offs_n)
    elif (BIAS_TYPE == 'matrix'):
        b_ptrs = (((Bias + (off_b * stride_bb)) + (off_h * stride_bh)) + ((offs_m[:, None] * stride_bm) + offs_n[None, :]))
    t_ptrs = ((TMP + (off_hb * seqlen_q_rounded)) + offs_m)
    lse_i = (tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf'))
    m_i = (tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf'))
    acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    if (EVEN_M & EVEN_N):
        if EVEN_HEADDIM:
            q = tl.load(q_ptrs)
        else:
            q = tl.load(q_ptrs, mask=(offs_d[None, :] < headdim), other=0.0)
    elif EVEN_HEADDIM:
        q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q), other=0.0)
    else:
        q = tl.load(q_ptrs, mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0)
    end_n = (seqlen_k if (not IS_CAUSAL) else tl.minimum(((start_m + 1) * BLOCK_M), seqlen_k))
    for start_n in range(0, end_n, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        if (EVEN_N & EVEN_M):
            if EVEN_HEADDIM:
                k = tl.load((k_ptrs + (start_n * stride_kn)))
            else:
                k = tl.load((k_ptrs + (start_n * stride_kn)), mask=(offs_d[None, :] < headdim), other=0.0)
        elif EVEN_HEADDIM:
            k = tl.load((k_ptrs + (start_n * stride_kn)), mask=((start_n + offs_n)[:, None] < seqlen_k), other=0.0)
        else:
            k = tl.load((k_ptrs + (start_n * stride_kn)), mask=(((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k, trans_b=True)
        if (not EVEN_N):
            qk += tl.where(((start_n + offs_n)[None, :] < seqlen_k), 0, float('-inf'))
        if IS_CAUSAL:
            qk += tl.where((offs_m[:, None] >= (start_n + offs_n)[None, :]), 0, float('-inf'))
        if (BIAS_TYPE != 'none'):
            if (BIAS_TYPE == 'vector'):
                if EVEN_N:
                    bias = tl.load((b_ptrs + start_n)).to(tl.float32)
                else:
                    bias = tl.load((b_ptrs + start_n), mask=((start_n + offs_n) < seqlen_k), other=0.0).to(tl.float32)
                bias = bias[None, :]
            elif (BIAS_TYPE == 'matrix'):
                if (EVEN_M & EVEN_N):
                    bias = tl.load((b_ptrs + start_n)).to(tl.float32)
                else:
                    bias = tl.load((b_ptrs + start_n), mask=((offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k)), other=0.0).to(tl.float32)
            qk = ((qk * softmax_scale) + bias)
            m_ij = tl.maximum(tl.max(qk, 1), lse_i)
            p = tl.exp((qk - m_ij[:, None]))
        else:
            m_ij = tl.maximum((tl.max(qk, 1) * softmax_scale), lse_i)
            p = tl.exp(((qk * softmax_scale) - m_ij[:, None]))
        l_ij = tl.sum(p, 1)
        acc_o_scale = tl.exp((m_i - m_ij))
        tl.store(t_ptrs, acc_o_scale)
        acc_o_scale = tl.load(t_ptrs)
        acc_o = (acc_o * acc_o_scale[:, None])
        if (EVEN_N & EVEN_M):
            if EVEN_HEADDIM:
                v = tl.load((v_ptrs + (start_n * stride_vn)))
            else:
                v = tl.load((v_ptrs + (start_n * stride_vn)), mask=(offs_d[None, :] < headdim), other=0.0)
        elif EVEN_HEADDIM:
            v = tl.load((v_ptrs + (start_n * stride_vn)), mask=((start_n + offs_n)[:, None] < seqlen_k), other=0.0)
        else:
            v = tl.load((v_ptrs + (start_n * stride_vn)), mask=(((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
        p = p.to(v.dtype)
        acc_o += tl.dot(p, v)
        m_i = m_ij
        l_i_new = (tl.exp((lse_i - m_ij)) + l_ij)
        lse_i = (m_ij + tl.log(l_i_new))
    o_scale = tl.exp((m_i - lse_i))
    tl.store(t_ptrs, o_scale)
    o_scale = tl.load(t_ptrs)
    acc_o = (acc_o * o_scale[:, None])
    start_m = tl.program_id(0)
    offs_m = ((start_m * BLOCK_M) + tl.arange(0, BLOCK_M))
    lse_ptrs = ((Lse + (off_hb * seqlen_q_rounded)) + offs_m)
    tl.store(lse_ptrs, lse_i)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = (((Out + (off_b * stride_ob)) + (off_h * stride_oh)) + ((offs_m[:, None] * stride_om) + offs_d[None, :]))
    if EVEN_M:
        if EVEN_HEADDIM:
            tl.store(out_ptrs, acc_o)
        else:
            tl.store(out_ptrs, acc_o, mask=(offs_d[None, :] < headdim))
    elif EVEN_HEADDIM:
        tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q))
    else:
        tl.store(out_ptrs, acc_o, mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)))

@triton.jit
def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = (off_hb // nheads)
    off_h = (off_hb % nheads)
    offs_m = ((start_m * BLOCK_M) + tl.arange(0, BLOCK_M))
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    o = tl.load(((((Out + (off_b * stride_ob)) + (off_h * stride_oh)) + (offs_m[:, None] * stride_om)) + offs_d[None, :]), mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0).to(tl.float32)
    do = tl.load(((((DO + (off_b * stride_dob)) + (off_h * stride_doh)) + (offs_m[:, None] * stride_dom)) + offs_d[None, :]), mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0).to(tl.float32)
    delta = tl.sum((o * do), axis=1)
    tl.store(((Delta + (off_hb * seqlen_q_rounded)) + offs_m), delta)

@triton.jit
def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
    if (EVEN_N & EVEN_M):
        if EVEN_HEADDIM:
            tl.store(dv_ptrs, dv)
            tl.store(dk_ptrs, dk)
        else:
            tl.store(dv_ptrs, dv, mask=(offs_d[None, :] < headdim))
            tl.store(dk_ptrs, dk, mask=(offs_d[None, :] < headdim))
    elif EVEN_HEADDIM:
        tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k))
        tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k))
    else:
        tl.store(dv_ptrs, dv, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)))
        tl.store(dk_ptrs, dk, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)))

@triton.jit
def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
    begin_m = (0 if (not IS_CAUSAL) else (((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M))
    offs_qm = (begin_m + tl.arange(0, BLOCK_M))
    offs_n = ((start_n * BLOCK_N) + tl.arange(0, BLOCK_N))
    offs_m = tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    q_ptrs = (Q + ((offs_qm[:, None] * stride_qm) + offs_d[None, :]))
    k_ptrs = (K + ((offs_n[:, None] * stride_kn) + offs_d[None, :]))
    v_ptrs = (V + ((offs_n[:, None] * stride_vn) + offs_d[None, :]))
    do_ptrs = (DO + ((offs_qm[:, None] * stride_dom) + offs_d[None, :]))
    dq_ptrs = (DQ + ((offs_qm[:, None] * stride_dqm) + offs_d[None, :]))
    if (BIAS_TYPE == 'vector'):
        b_ptrs = (Bias + offs_n)
    elif (BIAS_TYPE == 'matrix'):
        b_ptrs = (Bias + ((offs_qm[:, None] * stride_bm) + offs_n[None, :]))
    dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    if (begin_m >= seqlen_q):
        dv_ptrs = (DV + ((offs_n[:, None] * stride_dvn) + offs_d[None, :]))
        dk_ptrs = (DK + ((offs_n[:, None] * stride_dkn) + offs_d[None, :]))
        _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
        return
    if (EVEN_N & EVEN_M):
        if EVEN_HEADDIM:
            k = tl.load(k_ptrs)
            v = tl.load(v_ptrs)
        else:
            k = tl.load(k_ptrs, mask=(offs_d[None, :] < headdim), other=0.0)
            v = tl.load(v_ptrs, mask=(offs_d[None, :] < headdim), other=0.0)
    elif EVEN_HEADDIM:
        k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k), other=0.0)
        v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k), other=0.0)
    else:
        k = tl.load(k_ptrs, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
        v = tl.load(v_ptrs, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
    num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
    for start_m in range(begin_m, (num_block_m * BLOCK_M), BLOCK_M):
        start_m = tl.multiple_of(start_m, BLOCK_M)
        offs_m_curr = (start_m + offs_m)
        if (EVEN_M & EVEN_HEADDIM):
            q = tl.load(q_ptrs)
        elif EVEN_HEADDIM:
            q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q), other=0.0)
        else:
            q = tl.load(q_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0)
        qk = tl.dot(q, k, trans_b=True)
        if (not EVEN_N):
            qk = tl.where((offs_n[None, :] < seqlen_k), qk, float('-inf'))
        if IS_CAUSAL:
            qk = tl.where((offs_m_curr[:, None] >= offs_n[None, :]), qk, float('-inf'))
        if (BIAS_TYPE != 'none'):
            tl.debug_barrier()
            if (BIAS_TYPE == 'vector'):
                if EVEN_N:
                    bias = tl.load(b_ptrs).to(tl.float32)
                else:
                    bias = tl.load(b_ptrs, mask=(offs_n < seqlen_k), other=0.0).to(tl.float32)
                bias = bias[None, :]
            elif (BIAS_TYPE == 'matrix'):
                if (EVEN_M & EVEN_N):
                    bias = tl.load(b_ptrs).to(tl.float32)
                else:
                    bias = tl.load(b_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k)), other=0.0).to(tl.float32)
            qk = ((qk * softmax_scale) + bias)
        if (not (EVEN_M & EVEN_HEADDIM)):
            tl.debug_barrier()
        lse_i = tl.load((LSE + offs_m_curr))
        if (BIAS_TYPE == 'none'):
            p = tl.exp(((qk * softmax_scale) - lse_i[:, None]))
        else:
            p = tl.exp((qk - lse_i[:, None]))
        if (EVEN_M & EVEN_HEADDIM):
            do = tl.load(do_ptrs)
        else:
            do = tl.load(do_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0)
        dv += tl.dot(p.to(do.dtype), do, trans_a=True)
        if (not (EVEN_M & EVEN_HEADDIM)):
            tl.debug_barrier()
        dp = tl.dot(do, v, trans_b=True)
        if (not EVEN_HEADDIM):
            tl.debug_barrier()
        Di = tl.load((D + offs_m_curr))
        ds = ((p * (dp - Di[:, None])) * softmax_scale).to(q.dtype)
        dk += tl.dot(ds, q, trans_a=True)
        if (not (EVEN_M & EVEN_HEADDIM)):
            tl.debug_barrier()
        if (not ATOMIC_ADD):
            if (EVEN_M & EVEN_HEADDIM):
                dq = tl.load(dq_ptrs, eviction_policy='evict_last')
                dq += tl.dot(ds, k)
                tl.store(dq_ptrs, dq, eviction_policy='evict_last')
            elif EVEN_HEADDIM:
                dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q), other=0.0, eviction_policy='evict_last')
                dq += tl.dot(ds, k)
                tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q), eviction_policy='evict_last')
            else:
                dq = tl.load(dq_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0, eviction_policy='evict_last')
                dq += tl.dot(ds, k)
                tl.store(dq_ptrs, dq, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), eviction_policy='evict_last')
        else:
            dq = tl.dot(ds, k)
            if (EVEN_M & EVEN_HEADDIM):
                tl.atomic_add(dq_ptrs, dq)
            elif EVEN_HEADDIM:
                tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q))
            else:
                tl.atomic_add(dq_ptrs, dq, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)))
        dq_ptrs += (BLOCK_M * stride_dqm)
        q_ptrs += (BLOCK_M * stride_qm)
        do_ptrs += (BLOCK_M * stride_dom)
        if (BIAS_TYPE == 'matrix'):
            b_ptrs += (BLOCK_M * stride_bm)
    dv_ptrs = (DV + ((offs_n[:, None] * stride_dvn) + offs_d[None, :]))
    dk_ptrs = (DK + ((offs_n[:, None] * stride_dkn) + offs_d[None, :]))
    _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)

def init_to_zero(name):
    return (lambda nargs: nargs[name].zero_())

@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
@triton.heuristics({'EVEN_M': (lambda args: ((args['seqlen_q'] % args['BLOCK_M']) == 0)), 'EVEN_N': (lambda args: ((args['seqlen_k'] % args['BLOCK_N']) == 0)), 'EVEN_HEADDIM': (lambda args: (args['headdim'] == args['BLOCK_HEADDIM']))})
@triton.jit
def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
    off_hb = tl.program_id(1)
    off_b = (off_hb // nheads)
    off_h = (off_hb % nheads)
    Q += ((off_b * stride_qb) + (off_h * stride_qh))
    K += ((off_b * stride_kb) + (off_h * stride_kh))
    V += ((off_b * stride_vb) + (off_h * stride_vh))
    DO += ((off_b * stride_dob) + (off_h * stride_doh))
    DQ += ((off_b * stride_dqb) + (off_h * stride_dqh))
    DK += ((off_b * stride_dkb) + (off_h * stride_dkh))
    DV += ((off_b * stride_dvb) + (off_h * stride_dvh))
    if (BIAS_TYPE != 'none'):
        Bias += ((off_b * stride_bb) + (off_h * stride_bh))
    D += (off_hb * seqlen_q_rounded)
    LSE += (off_hb * seqlen_q_rounded)
    if (not SEQUENCE_PARALLEL):
        num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
        for start_n in range(0, num_block_n):
            _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
    else:
        start_n = tl.program_id(0)
        _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)

def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
    (batch, seqlen_q, nheads, d) = q.shape
    (_, seqlen_k, _, _) = k.shape
    assert (k.shape == (batch, seqlen_k, nheads, d))
    assert (v.shape == (batch, seqlen_k, nheads, d))
    assert (d <= 128), 'FlashAttention only support head dimensions up to 128'
    assert (q.dtype == k.dtype == v.dtype), 'All tensors must have the same type'
    assert (q.dtype in [torch.float16, torch.bfloat16]), 'Only support fp16 and bf16'
    assert (q.is_cuda and k.is_cuda and v.is_cuda)
    softmax_scale = (softmax_scale or (1.0 / math.sqrt(d)))
    has_bias = (bias is not None)
    bias_type = 'none'
    if has_bias:
        assert (bias.dtype in [q.dtype, torch.float])
        assert bias.is_cuda
        assert (bias.dim() == 4)
        if (bias.stride((- 1)) != 1):
            bias = bias.contiguous()
        if (bias.shape[2:] == (1, seqlen_k)):
            bias_type = 'vector'
        elif (bias.shape[2:] == (seqlen_q, seqlen_k)):
            bias_type = 'matrix'
        else:
            raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
        bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
    bias_strides = ((bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0))
    seqlen_q_rounded = (math.ceil((seqlen_q / 128)) * 128)
    lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    o = torch.empty_like(q)
    BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
    BLOCK = 128
    num_warps = (4 if (d <= 64) else 8)
    grid = (lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), (batch * nheads)))
    _fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, (seqlen_q // 32), (seqlen_k // 32), bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
    return (o, lse, softmax_scale)

def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
    if (do.stride((- 1)) != 1):
        do = do.contiguous()
    (batch, seqlen_q, nheads, d) = q.shape
    (_, seqlen_k, _, _) = k.shape
    assert (d <= 128)
    seqlen_q_rounded = (math.ceil((seqlen_q / 128)) * 128)
    assert (lse.shape == (batch, nheads, seqlen_q_rounded))
    assert (q.stride((- 1)) == k.stride((- 1)) == v.stride((- 1)) == o.stride((- 1)) == 1)
    assert (dq.stride((- 1)) == dk.stride((- 1)) == dv.stride((- 1)) == 1)
    softmax_scale = (softmax_scale or (1.0 / math.sqrt(d)))
    dq_accum = torch.empty_like(q, dtype=torch.float32)
    delta = torch.empty_like(lse)
    BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
    grid = (lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), (batch * nheads)))
    _bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
    has_bias = (bias is not None)
    bias_type = 'none'
    if has_bias:
        assert (bias.dtype in [q.dtype, torch.float])
        assert bias.is_cuda
        assert (bias.dim() == 4)
        assert (bias.stride((- 1)) == 1)
        if (bias.shape[2:] == (1, seqlen_k)):
            bias_type = 'vector'
        elif (bias.shape[2:] == (seqlen_q, seqlen_k)):
            bias_type = 'matrix'
        else:
            raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
        bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
    bias_strides = ((bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0))
    grid = (lambda META: ((triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1), (batch * nheads)))
    _bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, (seqlen_q // 32), (seqlen_k // 32), bias_type, causal, BLOCK_HEADDIM)
    dq.copy_(dq_accum)

class FlashAttnQKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
        '\n            qkv: (batch, seqlen, 3, nheads, headdim)\n            bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).\n                For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).\n                ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)\n        '
        if (qkv.stride((- 1)) != 1):
            qkv = qkv.contiguous()
        (o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
        ctx.save_for_backward(qkv, o, lse, bias)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        (qkv, o, lse, bias) = ctx.saved_tensors
        assert (not ctx.needs_input_grad[1]), 'FlashAttention does not support bias gradient yet'
        with torch.inference_mode():
            dqkv = torch.empty_like(qkv)
            _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return (dqkv, None, None, None)
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply

class FlashAttnKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
        '\n            q: (batch, seqlen_q, nheads, headdim)\n            kv: (batch, seqlen_k, 2, nheads, headdim)\n            bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).\n                For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).\n                ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)\n        '
        (q, kv) = [(x if (x.stride((- 1)) == 1) else x.contiguous()) for x in [q, kv]]
        (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
        ctx.save_for_backward(q, kv, o, lse, bias)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        (q, kv, o, lse, bias) = ctx.saved_tensors
        if (len(ctx.needs_input_grad) >= 3):
            assert (not ctx.needs_input_grad[2]), 'FlashAttention does not support bias gradient yet'
        with torch.inference_mode():
            dq = torch.empty_like(q)
            dkv = torch.empty_like(kv)
            _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return (dq, dkv, None, None, None)
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply

class FlashAttnFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
        '\n            q: (batch_size, seqlen_q, nheads, headdim)\n            k, v: (batch_size, seqlen_k, nheads, headdim)\n            bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).\n                For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).\n                ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)\n        '
        (q, k, v) = [(x if (x.stride((- 1)) == 1) else x.contiguous()) for x in [q, k, v]]
        (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
        ctx.save_for_backward(q, k, v, o, lse, bias)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        (q, k, v, o, lse, bias) = ctx.saved_tensors
        assert (not ctx.needs_input_grad[3]), 'FlashAttention does not support bias gradient yet'
        with torch.inference_mode():
            dq = torch.empty_like(q)
            dk = torch.empty_like(k)
            dv = torch.empty_like(v)
            _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return (dq, dk, dv, None, None, None)
flash_attn_func = FlashAttnFunc.apply