josep-empathy commited on
Commit
aa50b8c
·
verified ·
1 Parent(s): 5597a3d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -13,3 +13,59 @@ tags:
13
  - gliner
14
  - groceries
15
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - gliner
14
  - groceries
15
  ---
16
+
17
+ # Grocery Named Entity Recognition Model
18
+
19
+ A fine-tuned GLiNER model for identifying grocery items and food categories in text.
20
+
21
+ ## Model Description
22
+
23
+ This model is fine-tuned on the grocery-ner-dataset to identify 14 different categories of grocery items including fruits, vegetables, dairy products, and more.
24
+
25
+ ### Supported Entity Types
26
+
27
+ - Fruits Vegetables
28
+ - Lactose, Diary, Eggs, Cheese, Yoghurt
29
+ - Meat, Fish, Seafood
30
+ - Frozen, Prepared Meals
31
+ - Baking, Cooking
32
+ - Cereals, Grains, Canned, Seeds
33
+ - Breads
34
+ - Snacks, Pastries, Treats
35
+ - Frozen Desserts
36
+ - Hot Drinks, Chilled Drinks
37
+ - Alcoholic Drinks
38
+ - Spices, Sauces
39
+ - World Foods
40
+ - Dietary Restrictions, Health, Allergens, Lifestyle
41
+
42
+ ## Training Details
43
+
44
+ - Base Model: gliner-community/gliner_medium-v2.5
45
+ - Training Data: empathyai/grocery-ner-dataset
46
+ - Batch Size: 8
47
+ - Learning Rate: 5e-6
48
+ - Weight Decay: 0.01
49
+ - Focal Loss Parameters: alpha=0.75, gamma=2
50
+ - Training Strategy: Linear learning rate with 10% warmup
51
+
52
+ ## Usage Example
53
+
54
+ ```python
55
+ from gliner import GLiNER
56
+
57
+ # Load model
58
+ model = GLiNER.from_pretrained("empathyai/grocery-ner-model")
59
+
60
+ # Example text
61
+ text = "I need to buy milk, bread, and fresh apples"
62
+
63
+ # Get predictions
64
+ predictions = model.predict(text)
65
+ print(predictions)
66
+ ```
67
+
68
+ ## Limitations
69
+ - Optimized for English language text only
70
+ - Best performance on grocery shopping and food-related contexts
71
+ - May not recognize brand names or regional food items not present in training data