File size: 5,308 Bytes
b5e217f
8d4fef0
b5e217f
 
8d4fef0
 
b5e217f
 
 
 
8d4fef0
 
 
 
 
 
 
 
 
 
 
b5e217f
 
 
 
 
 
 
8d4fef0
b5e217f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
base_model: roneneldan/TinyStories-1Layer-21M
tags:
- generated_from_trainer
datasets:
- roneneldan/TinyStories
metrics:
- accuracy
model-index:
- name: tinystories_1layer_attn_mlp_C25k_k16_mse_weighted
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: roneneldan/TinyStories
      type: roneneldan/TinyStories
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5193506309245984
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tinystories_1layer_attn_mlp_C25k_k16_mse_weighted

This model is a fine-tuned version of [roneneldan/TinyStories-1Layer-21M](https://huggingface.co/roneneldan/TinyStories-1Layer-21M) on the roneneldan/TinyStories dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0353
- Accuracy: 0.5194
- Multicode K: 1
- Dead Code Fraction/layer0: 0.1640
- Mse/layer0: 501.8128
- Input Norm/layer0: 31.9989
- Output Norm/layer0: 22.8009

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Multicode K | Dead Code Fraction/layer0 | Mse/layer0 | Input Norm/layer0 | Output Norm/layer0 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:-------------------------:|:----------:|:-----------------:|:------------------:|
| 2.8364        | 0.05  | 500   | 2.7649          | 0.4227   | 1           | 0.3619                    | 634.8932   | 31.9979           | 18.0819            |
| 2.3611        | 0.1   | 1000  | 2.3705          | 0.4712   | 1           | 0.3607                    | 568.7264   | 31.9979           | 20.6630            |
| 2.2395        | 0.15  | 1500  | 2.2531          | 0.4866   | 1           | 0.3266                    | 550.3311   | 31.9979           | 21.3297            |
| 2.1999        | 0.2   | 2000  | 2.1908          | 0.4955   | 1           | 0.3048                    | 539.0150   | 31.9980           | 21.7663            |
| 2.1688        | 0.25  | 2500  | 2.1551          | 0.5006   | 1           | 0.2949                    | 530.4651   | 31.9980           | 22.0228            |
| 2.1108        | 0.3   | 3000  | 2.1269          | 0.5051   | 1           | 0.2809                    | 524.9530   | 31.9981           | 22.2071            |
| 2.1045        | 0.35  | 3500  | 2.1130          | 0.5079   | 1           | 0.2735                    | 523.0844   | 31.9982           | 22.3519            |
| 2.0944        | 0.4   | 4000  | 2.0996          | 0.5089   | 1           | 0.2655                    | 519.8852   | 31.9983           | 22.3930            |
| 2.1314        | 0.45  | 4500  | 2.0860          | 0.5115   | 1           | 0.2567                    | 517.0385   | 31.9983           | 22.4720            |
| 2.0685        | 1.02  | 5000  | 2.0770          | 0.5131   | 1           | 0.2497                    | 514.3712   | 31.9984           | 22.4943            |
| 2.0496        | 1.07  | 5500  | 2.0730          | 0.5137   | 1           | 0.2381                    | 513.7823   | 31.9985           | 22.5625            |
| 2.1002        | 1.12  | 6000  | 2.0667          | 0.5144   | 1           | 0.2305                    | 510.7876   | 31.9986           | 22.5882            |
| 2.0723        | 1.17  | 6500  | 2.0632          | 0.5148   | 1           | 0.2206                    | 510.5624   | 31.9986           | 22.6133            |
| 2.023         | 1.22  | 7000  | 2.0574          | 0.5157   | 1           | 0.2110                    | 509.9878   | 31.9987           | 22.6544            |
| 2.0791        | 1.27  | 7500  | 2.0513          | 0.5168   | 1           | 0.2033                    | 507.1514   | 31.9987           | 22.7018            |
| 2.0252        | 1.32  | 8000  | 2.0463          | 0.5173   | 1           | 0.1953                    | 505.2723   | 31.9988           | 22.7108            |
| 2.0432        | 1.37  | 8500  | 2.0423          | 0.5183   | 1           | 0.1875                    | 502.9395   | 31.9988           | 22.7562            |
| 2.0549        | 1.42  | 9000  | 2.0394          | 0.5188   | 1           | 0.1797                    | 502.9016   | 31.9988           | 22.7722            |
| 2.0087        | 1.47  | 9500  | 2.0365          | 0.5193   | 1           | 0.1704                    | 504.0088   | 31.9989           | 22.7990            |
| 2.0569        | 2.04  | 10000 | 2.0353          | 0.5194   | 1           | 0.1640                    | 501.8128   | 31.9989           | 22.8009            |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1