File size: 2,051 Bytes
76c1200 929a71c 76c1200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
- robust-speech-event
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4813
- Wer: 0.7207
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.2 | 0.53 | 400 | 3.1949 | 0.9964 |
| 2.9387 | 1.07 | 800 | 2.5015 | 1.0337 |
| 1.5975 | 1.6 | 1200 | 1.0928 | 0.9945 |
| 1.0688 | 2.13 | 1600 | 0.8388 | 0.9390 |
| 0.8977 | 2.66 | 2000 | 0.7106 | 0.8889 |
| 0.789 | 3.2 | 2400 | 0.6051 | 0.8273 |
| 0.7116 | 3.73 | 2800 | 0.5580 | 0.7855 |
| 0.6576 | 4.26 | 3200 | 0.5033 | 0.7433 |
| 0.6002 | 4.79 | 3600 | 0.4813 | 0.7207 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
|