emre570 commited on
Commit
ad656a4
·
verified ·
1 Parent(s): 615de9c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -168
README.md CHANGED
@@ -3,199 +3,100 @@ library_name: transformers
3
  tags:
4
  - trl
5
  - sft
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for Model ID
9
 
10
- <!-- Provide a quick summary of what the model is/does. -->
11
 
 
12
 
 
13
 
14
- ## Model Details
15
 
16
- ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
 
 
 
19
 
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
21
 
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
 
30
- ### Model Sources [optional]
 
31
 
32
- <!-- Provide the basic links for the model. -->
 
33
 
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
 
 
 
37
 
38
- ## Uses
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
41
 
42
- ### Direct Use
 
 
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
45
 
46
- [More Information Needed]
47
 
48
- ### Downstream Use [optional]
 
 
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
51
 
52
- [More Information Needed]
 
53
 
54
- ### Out-of-Scope Use
 
 
 
 
55
 
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
57
 
58
- [More Information Needed]
 
 
59
 
60
- ## Bias, Risks, and Limitations
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
63
 
64
- [More Information Needed]
 
 
 
 
 
 
 
65
 
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
-
201
- [More Information Needed]
 
3
  tags:
4
  - trl
5
  - sft
6
+ datasets:
7
+ - cenfis/alpaca-turkish-combined
8
+ language:
9
+ - en
10
+ - tr
11
+ base_model:
12
+ - meta-llama/Llama-3.2-1B
13
  ---
14
 
15
+ # Llama 3-8B Turkish Model
16
 
17
+ This repo contains the experimental-educational fine-tuned model for the Turkish Llama 3 Project and its variants that can be used for different purposes.
18
 
19
+ The actual trained model is an adapter model of [Unsloth's Llama 3-8B quantized model](https://huggingface.co/unsloth/llama-3-8b-bnb-4bit), which is then converted into .gguf format using llama.cpp and into .bin format for vLLM.
20
 
21
+ The model is open to further development, we will continue to train the model when we obtain quality data. We can't use every Turkish dataset since some of them has poor quality of translation from English.
22
 
23
+ You can access the fine-tuning code [here](https://colab.research.google.com/drive/1QRaqYxjfnFvwA_9jb7V0Z5bJr-PuHH7w?usp=sharing).
24
 
25
+ Trained with NVIDIA L4 with 150 steps, took around 8 minutes.
26
 
27
+ ## Example Usages
28
+ You can use it from Transformers:
29
+ ```py
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM
31
 
32
+ tokenizer = AutoTokenizer.from_pretrained("myzens/llama3-8b-tr-finetuned")
33
+ model = AutoModelForCausalLM.from_pretrained("myzens/llama3-8b-tr-finetuned")
34
 
35
+ alpaca_prompt = """
36
+ Instruction:
37
+ {}
 
 
 
 
38
 
39
+ Input:
40
+ {}
41
 
42
+ Response:
43
+ {}"""
44
 
45
+ inputs = tokenizer([
46
+ alpaca_prompt.format(
47
+ "",
48
+ "Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.",
49
+ "",
50
+ )], return_tensors = "pt").to("cuda")
51
 
 
52
 
53
+ outputs = model.generate(**inputs, max_new_tokens=192)
54
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
55
+ ```
56
 
57
+ Transformers Pipeline:
58
+ ```py
59
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
60
 
61
+ tokenizer = AutoTokenizer.from_pretrained("myzens/llama3-8b-tr-finetuned")
62
+ model = AutoModelForCausalLM.from_pretrained("myzens/llama3-8b-tr-finetuned")
63
 
64
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
65
 
66
+ alpaca_prompt = """
67
+ Instruction:
68
+ {}
69
 
70
+ Input:
71
+ {}
72
 
73
+ Response:
74
+ {}"""
75
 
76
+ input = alpaca_prompt.format(
77
+ "",
78
+ "Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.",
79
+ "",
80
+ )
81
 
82
+ pipe(input)
83
+ ```
84
 
85
+ Output:
86
+ ```
87
+ Instruction:
88
 
 
89
 
90
+ Input:
91
+ Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.
92
 
93
+ Response:
94
+ 1. Anıtkabir - Mustafa Kemal Atatürk'ün mezarı
95
+ 2. Gençlik ve Spor Sarayı - spor etkinliklerinin yapıldığı yer
96
+ 3. Kızılay Meydanı - Ankara'nın merkezinde bulunan bir meydan
97
+ ```
98
+ ### **Important Notes**
99
+ - We recommend you to use an Alpaca Prompt Template or another template, otherwise you can see generations with no meanings or repeating the same sentence constantly.
100
+ - Use the model with a CUDA supported GPU.
101
 
102
+ Fine-tuned by [emre570](https://github.com/emre570).