Update README.md
Browse files
README.md
CHANGED
@@ -3,199 +3,100 @@ library_name: transformers
|
|
3 |
tags:
|
4 |
- trl
|
5 |
- sft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
#
|
9 |
|
10 |
-
|
11 |
|
|
|
12 |
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
- **Model type:** [More Information Needed]
|
26 |
-
- **Language(s) (NLP):** [More Information Needed]
|
27 |
-
- **License:** [More Information Needed]
|
28 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
## Uses
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
## Bias, Risks, and Limitations
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
69 |
-
|
70 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
71 |
-
|
72 |
-
## How to Get Started with the Model
|
73 |
-
|
74 |
-
Use the code below to get started with the model.
|
75 |
-
|
76 |
-
[More Information Needed]
|
77 |
-
|
78 |
-
## Training Details
|
79 |
-
|
80 |
-
### Training Data
|
81 |
-
|
82 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
83 |
-
|
84 |
-
[More Information Needed]
|
85 |
-
|
86 |
-
### Training Procedure
|
87 |
-
|
88 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
89 |
-
|
90 |
-
#### Preprocessing [optional]
|
91 |
-
|
92 |
-
[More Information Needed]
|
93 |
-
|
94 |
-
|
95 |
-
#### Training Hyperparameters
|
96 |
-
|
97 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
98 |
-
|
99 |
-
#### Speeds, Sizes, Times [optional]
|
100 |
-
|
101 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
-
|
103 |
-
[More Information Needed]
|
104 |
-
|
105 |
-
## Evaluation
|
106 |
-
|
107 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
108 |
-
|
109 |
-
### Testing Data, Factors & Metrics
|
110 |
-
|
111 |
-
#### Testing Data
|
112 |
-
|
113 |
-
<!-- This should link to a Dataset Card if possible. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Factors
|
118 |
-
|
119 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Metrics
|
124 |
-
|
125 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
### Results
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
#### Summary
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
## Model Examination [optional]
|
138 |
-
|
139 |
-
<!-- Relevant interpretability work for the model goes here -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
## Environmental Impact
|
144 |
-
|
145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
-
|
147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
-
|
149 |
-
- **Hardware Type:** [More Information Needed]
|
150 |
-
- **Hours used:** [More Information Needed]
|
151 |
-
- **Cloud Provider:** [More Information Needed]
|
152 |
-
- **Compute Region:** [More Information Needed]
|
153 |
-
- **Carbon Emitted:** [More Information Needed]
|
154 |
-
|
155 |
-
## Technical Specifications [optional]
|
156 |
-
|
157 |
-
### Model Architecture and Objective
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Compute Infrastructure
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Hardware
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
-
|
175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
-
|
177 |
-
**BibTeX:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
**APA:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## Glossary [optional]
|
186 |
-
|
187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## More Information [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Authors [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Contact
|
200 |
-
|
201 |
-
[More Information Needed]
|
|
|
3 |
tags:
|
4 |
- trl
|
5 |
- sft
|
6 |
+
datasets:
|
7 |
+
- cenfis/alpaca-turkish-combined
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- tr
|
11 |
+
base_model:
|
12 |
+
- meta-llama/Llama-3.2-1B
|
13 |
---
|
14 |
|
15 |
+
# Llama 3-8B Turkish Model
|
16 |
|
17 |
+
This repo contains the experimental-educational fine-tuned model for the Turkish Llama 3 Project and its variants that can be used for different purposes.
|
18 |
|
19 |
+
The actual trained model is an adapter model of [Unsloth's Llama 3-8B quantized model](https://huggingface.co/unsloth/llama-3-8b-bnb-4bit), which is then converted into .gguf format using llama.cpp and into .bin format for vLLM.
|
20 |
|
21 |
+
The model is open to further development, we will continue to train the model when we obtain quality data. We can't use every Turkish dataset since some of them has poor quality of translation from English.
|
22 |
|
23 |
+
You can access the fine-tuning code [here](https://colab.research.google.com/drive/1QRaqYxjfnFvwA_9jb7V0Z5bJr-PuHH7w?usp=sharing).
|
24 |
|
25 |
+
Trained with NVIDIA L4 with 150 steps, took around 8 minutes.
|
26 |
|
27 |
+
## Example Usages
|
28 |
+
You can use it from Transformers:
|
29 |
+
```py
|
30 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
31 |
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("myzens/llama3-8b-tr-finetuned")
|
33 |
+
model = AutoModelForCausalLM.from_pretrained("myzens/llama3-8b-tr-finetuned")
|
34 |
|
35 |
+
alpaca_prompt = """
|
36 |
+
Instruction:
|
37 |
+
{}
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
Input:
|
40 |
+
{}
|
41 |
|
42 |
+
Response:
|
43 |
+
{}"""
|
44 |
|
45 |
+
inputs = tokenizer([
|
46 |
+
alpaca_prompt.format(
|
47 |
+
"",
|
48 |
+
"Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.",
|
49 |
+
"",
|
50 |
+
)], return_tensors = "pt").to("cuda")
|
51 |
|
|
|
52 |
|
53 |
+
outputs = model.generate(**inputs, max_new_tokens=192)
|
54 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
55 |
+
```
|
56 |
|
57 |
+
Transformers Pipeline:
|
58 |
+
```py
|
59 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
60 |
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained("myzens/llama3-8b-tr-finetuned")
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("myzens/llama3-8b-tr-finetuned")
|
63 |
|
64 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
65 |
|
66 |
+
alpaca_prompt = """
|
67 |
+
Instruction:
|
68 |
+
{}
|
69 |
|
70 |
+
Input:
|
71 |
+
{}
|
72 |
|
73 |
+
Response:
|
74 |
+
{}"""
|
75 |
|
76 |
+
input = alpaca_prompt.format(
|
77 |
+
"",
|
78 |
+
"Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.",
|
79 |
+
"",
|
80 |
+
)
|
81 |
|
82 |
+
pipe(input)
|
83 |
+
```
|
84 |
|
85 |
+
Output:
|
86 |
+
```
|
87 |
+
Instruction:
|
88 |
|
|
|
89 |
|
90 |
+
Input:
|
91 |
+
Ankara'da gezilebilecek 3 yeri söyle ve ne olduklarını kısaca açıkla.
|
92 |
|
93 |
+
Response:
|
94 |
+
1. Anıtkabir - Mustafa Kemal Atatürk'ün mezarı
|
95 |
+
2. Gençlik ve Spor Sarayı - spor etkinliklerinin yapıldığı yer
|
96 |
+
3. Kızılay Meydanı - Ankara'nın merkezinde bulunan bir meydan
|
97 |
+
```
|
98 |
+
### **Important Notes**
|
99 |
+
- We recommend you to use an Alpaca Prompt Template or another template, otherwise you can see generations with no meanings or repeating the same sentence constantly.
|
100 |
+
- Use the model with a CUDA supported GPU.
|
101 |
|
102 |
+
Fine-tuned by [emre570](https://github.com/emre570).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|