Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- en1ak/ygo_lua
|
5 |
+
language:
|
6 |
+
- zh
|
7 |
+
base_model:
|
8 |
+
- deepseek-ai/deepseek-coder-1.3b-base
|
9 |
+
---
|
10 |
+
|
11 |
+
## 数据构建
|
12 |
+
|
13 |
+
### 获取原始数据
|
14 |
+
|
15 |
+
1. **下载中/日文卡片数据库:**
|
16 |
+
```bash
|
17 |
+
cd ./cdb_cn
|
18 |
+
wget -O cards.cdb https://cdn02.moecube.com:444/ygopro-database/zh-CN/cards.cdb
|
19 |
+
|
20 |
+
cd ./cdb_jp
|
21 |
+
wget -O cards.cdb https://cdn02.moecube.com:444/ygopro-database/ja_JP/cards.cdb
|
22 |
+
```
|
23 |
+
|
24 |
+
2. **下载lua脚本:**
|
25 |
+
```bash
|
26 |
+
git clone https://github.com/mycard/ygopro-scripts.git
|
27 |
+
```
|
28 |
+
|
29 |
+
### 数据处理与格式
|
30 |
+
|
31 |
+
3. **运行数据构造脚本:**
|
32 |
+
```bash
|
33 |
+
python all_in_one.py
|
34 |
+
```
|
35 |
+
|
36 |
+
4. **最终生成的训练数据格式如下(JSONL,每行为一条训练样本):**
|
37 |
+
|
38 |
+
- `instruction`:
|
39 |
+
```
|
40 |
+
下面是卡片的信息,请根据这些信息生成lua脚本:{name},{desc},{tag},卡密为{id}
|
41 |
+
```
|
42 |
+
- `output`:
|
43 |
+
```
|
44 |
+
{code}
|
45 |
+
```
|
46 |
+
训练集token总数约为20m,平均每条1k,最大token数3019
|
47 |
+
|
48 |
+
这里也提供可以直接使用的数据集:https://huggingface.co/datasets/en1ak/ygo_lua
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
## 模型微调
|
53 |
+
|
54 |
+
### 训练环境
|
55 |
+
|
56 |
+
- **基座模型**: [deepseek-coder-1.3b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct)
|
57 |
+
- **训练脚本**:官方 `finetune_deepseekcoder.py`
|
58 |
+
- **GPU**:NVIDIA RTX 5090
|
59 |
+
|
60 |
+
### 训练参数
|
61 |
+
|
62 |
+
```bash
|
63 |
+
deepspeed finetune.py \
|
64 |
+
--model_name_or_path $MODEL_PATH \
|
65 |
+
--data_path $DATA_PATH \
|
66 |
+
--output_dir $OUTPUT_PATH \
|
67 |
+
--num_train_epochs 3 \
|
68 |
+
--model_max_length 4096 \
|
69 |
+
--per_device_train_batch_size 8 \
|
70 |
+
--per_device_eval_batch_size 1 \
|
71 |
+
--gradient_accumulation_steps 4 \
|
72 |
+
--evaluation_strategy "no" \
|
73 |
+
--save_strategy "epoch" \
|
74 |
+
--save_total_limit 5 \
|
75 |
+
--learning_rate 2e-5 \
|
76 |
+
--warmup_steps 10 \
|
77 |
+
--logging_steps 100 \
|
78 |
+
--lr_scheduler_type "cosine" \
|
79 |
+
--gradient_checkpointing True \
|
80 |
+
--report_to "tensorboard" \
|
81 |
+
--deepspeed configs/ds_config_zero3.json \
|
82 |
+
--bf16 True
|
83 |
+
```
|
84 |
+
|
85 |
+
## 性能评测
|
86 |
+
|
87 |
+
| 模型路径 | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU | BERTScore Precision | BERTScore Recall | BERTScore F1 |
|
88 |
+
|------------|---------|---------|---------|--------|---------------------|------------------|--------------|
|
89 |
+
| base model | 0.0753 | 0.0125 | 0.0539 | 0.0010 | 0.6216 | 0.6621 | 0.6400 |
|
90 |
+
| on_cn+jp | 0.4603 | 0.4214 | 0.4302 | 0.1183 | 0.8841 | 0.8541 | 0.8673 |
|
91 |
+
| on_cn | 0.3042 | 0.2610 | 0.2750 | 0.0769 | 0.7955 | 0.7647 | 0.7767 |
|