endomorphosis commited on
Commit
efc9c0a
1 Parent(s): 168f760

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151646,
3
+ "<|endoftext|>": 151643,
4
+ "<|im_end|>": 151645,
5
+ "<|im_start|>": 151644
6
+ }
config.json ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "lmms-lab/llava-onevision-qwen2-0.5b-ov",
4
+ "architectures": [
5
+ "LlavaQwenForCausalLM"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 151643,
9
+ "eos_token_id": 151645,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 896,
12
+ "ignore_index": -100,
13
+ "image_aspect_ratio": "anyres_max_9",
14
+ "image_crop_resolution": null,
15
+ "image_grid_pinpoints": [
16
+ [
17
+ 384,
18
+ 384
19
+ ],
20
+ [
21
+ 384,
22
+ 768
23
+ ],
24
+ [
25
+ 384,
26
+ 1152
27
+ ],
28
+ [
29
+ 384,
30
+ 1536
31
+ ],
32
+ [
33
+ 384,
34
+ 1920
35
+ ],
36
+ [
37
+ 384,
38
+ 2304
39
+ ],
40
+ [
41
+ 768,
42
+ 384
43
+ ],
44
+ [
45
+ 768,
46
+ 768
47
+ ],
48
+ [
49
+ 768,
50
+ 1152
51
+ ],
52
+ [
53
+ 768,
54
+ 1536
55
+ ],
56
+ [
57
+ 768,
58
+ 1920
59
+ ],
60
+ [
61
+ 768,
62
+ 2304
63
+ ],
64
+ [
65
+ 1152,
66
+ 384
67
+ ],
68
+ [
69
+ 1152,
70
+ 768
71
+ ],
72
+ [
73
+ 1152,
74
+ 1152
75
+ ],
76
+ [
77
+ 1152,
78
+ 1536
79
+ ],
80
+ [
81
+ 1152,
82
+ 1920
83
+ ],
84
+ [
85
+ 1152,
86
+ 2304
87
+ ],
88
+ [
89
+ 1536,
90
+ 384
91
+ ],
92
+ [
93
+ 1536,
94
+ 768
95
+ ],
96
+ [
97
+ 1536,
98
+ 1152
99
+ ],
100
+ [
101
+ 1536,
102
+ 1536
103
+ ],
104
+ [
105
+ 1536,
106
+ 1920
107
+ ],
108
+ [
109
+ 1536,
110
+ 2304
111
+ ],
112
+ [
113
+ 1920,
114
+ 384
115
+ ],
116
+ [
117
+ 1920,
118
+ 768
119
+ ],
120
+ [
121
+ 1920,
122
+ 1152
123
+ ],
124
+ [
125
+ 1920,
126
+ 1536
127
+ ],
128
+ [
129
+ 1920,
130
+ 1920
131
+ ],
132
+ [
133
+ 1920,
134
+ 2304
135
+ ],
136
+ [
137
+ 2304,
138
+ 384
139
+ ],
140
+ [
141
+ 2304,
142
+ 768
143
+ ],
144
+ [
145
+ 2304,
146
+ 1152
147
+ ],
148
+ [
149
+ 2304,
150
+ 1536
151
+ ],
152
+ [
153
+ 2304,
154
+ 1920
155
+ ],
156
+ [
157
+ 2304,
158
+ 2304
159
+ ]
160
+ ],
161
+ "image_seq_length": 576,
162
+ "image_split_resolution": null,
163
+ "image_token_index": 151646,
164
+ "initializer_range": 0.02,
165
+ "intermediate_size": 4864,
166
+ "max_position_embeddings": 32768,
167
+ "max_window_layers": 24,
168
+ "mm_hidden_size": 1152,
169
+ "mm_newline_position": "one_token",
170
+ "mm_patch_merge_type": "spatial_unpad",
171
+ "mm_projector_lr": null,
172
+ "mm_projector_type": "mlp2x_gelu",
173
+ "mm_resampler_type": null,
174
+ "mm_spatial_pool_mode": "bilinear",
175
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
176
+ "mm_use_im_patch_token": false,
177
+ "mm_use_im_start_end": false,
178
+ "mm_vision_select_feature": "patch",
179
+ "mm_vision_select_layer": -2,
180
+ "mm_vision_tower": "google/siglip-so400m-patch14-384",
181
+ "mm_vision_tower_lr": 2e-06,
182
+ "model_type": "llava",
183
+ "num_attention_heads": 14,
184
+ "num_hidden_layers": 24,
185
+ "num_key_value_heads": 2,
186
+ "pos_skipping_range": 4096,
187
+ "projector_hidden_act": "gelu",
188
+ "rms_norm_eps": 1e-06,
189
+ "rope_scaling": null,
190
+ "rope_theta": 1000000.0,
191
+ "sliding_window": 32768,
192
+ "text_config": {
193
+ "_attn_implementation_autoset": false,
194
+ "_name_or_path": "",
195
+ "add_cross_attention": false,
196
+ "architectures": null,
197
+ "attention_bias": false,
198
+ "attention_dropout": 0.0,
199
+ "bad_words_ids": null,
200
+ "begin_suppress_tokens": null,
201
+ "bos_token_id": 1,
202
+ "chunk_size_feed_forward": 0,
203
+ "cross_attention_hidden_size": null,
204
+ "decoder_start_token_id": null,
205
+ "diversity_penalty": 0.0,
206
+ "do_sample": false,
207
+ "early_stopping": false,
208
+ "encoder_no_repeat_ngram_size": 0,
209
+ "eos_token_id": 2,
210
+ "exponential_decay_length_penalty": null,
211
+ "finetuning_task": null,
212
+ "forced_bos_token_id": null,
213
+ "forced_eos_token_id": null,
214
+ "head_dim": 128,
215
+ "hidden_act": "silu",
216
+ "hidden_size": 4096,
217
+ "id2label": {
218
+ "0": "LABEL_0",
219
+ "1": "LABEL_1"
220
+ },
221
+ "initializer_range": 0.02,
222
+ "intermediate_size": 11008,
223
+ "is_decoder": false,
224
+ "is_encoder_decoder": false,
225
+ "label2id": {
226
+ "LABEL_0": 0,
227
+ "LABEL_1": 1
228
+ },
229
+ "length_penalty": 1.0,
230
+ "max_length": 20,
231
+ "max_position_embeddings": 2048,
232
+ "min_length": 0,
233
+ "mlp_bias": false,
234
+ "model_type": "llama",
235
+ "no_repeat_ngram_size": 0,
236
+ "num_attention_heads": 32,
237
+ "num_beam_groups": 1,
238
+ "num_beams": 1,
239
+ "num_hidden_layers": 32,
240
+ "num_key_value_heads": 32,
241
+ "num_return_sequences": 1,
242
+ "output_attentions": false,
243
+ "output_hidden_states": false,
244
+ "output_scores": false,
245
+ "pad_token_id": null,
246
+ "prefix": null,
247
+ "pretraining_tp": 1,
248
+ "problem_type": null,
249
+ "pruned_heads": {},
250
+ "remove_invalid_values": false,
251
+ "repetition_penalty": 1.0,
252
+ "return_dict": true,
253
+ "return_dict_in_generate": false,
254
+ "rms_norm_eps": 1e-06,
255
+ "rope_scaling": null,
256
+ "rope_theta": 10000.0,
257
+ "sep_token_id": null,
258
+ "suppress_tokens": null,
259
+ "task_specific_params": null,
260
+ "temperature": 1.0,
261
+ "tf_legacy_loss": false,
262
+ "tie_encoder_decoder": false,
263
+ "tie_word_embeddings": false,
264
+ "tokenizer_class": null,
265
+ "top_k": 50,
266
+ "top_p": 1.0,
267
+ "torch_dtype": null,
268
+ "torchscript": false,
269
+ "typical_p": 1.0,
270
+ "use_bfloat16": false,
271
+ "use_cache": true,
272
+ "vocab_size": 32000
273
+ },
274
+ "tokenizer_model_max_length": 32768,
275
+ "tokenizer_padding_side": "right",
276
+ "torch_dtype": "bfloat16",
277
+ "transformers_version": "4.46.3",
278
+ "use_cache": true,
279
+ "use_mm_proj": true,
280
+ "use_pos_skipping": false,
281
+ "use_sliding_window": false,
282
+ "vision_config": {
283
+ "_attn_implementation_autoset": false,
284
+ "_name_or_path": "",
285
+ "add_cross_attention": false,
286
+ "architectures": null,
287
+ "attention_dropout": 0.0,
288
+ "bad_words_ids": null,
289
+ "begin_suppress_tokens": null,
290
+ "bos_token_id": null,
291
+ "chunk_size_feed_forward": 0,
292
+ "cross_attention_hidden_size": null,
293
+ "decoder_start_token_id": null,
294
+ "diversity_penalty": 0.0,
295
+ "do_sample": false,
296
+ "early_stopping": false,
297
+ "encoder_no_repeat_ngram_size": 0,
298
+ "eos_token_id": null,
299
+ "exponential_decay_length_penalty": null,
300
+ "finetuning_task": null,
301
+ "forced_bos_token_id": null,
302
+ "forced_eos_token_id": null,
303
+ "hidden_act": "quick_gelu",
304
+ "hidden_size": 1024,
305
+ "id2label": {
306
+ "0": "LABEL_0",
307
+ "1": "LABEL_1"
308
+ },
309
+ "image_size": 336,
310
+ "initializer_factor": 1.0,
311
+ "initializer_range": 0.02,
312
+ "intermediate_size": 4096,
313
+ "is_decoder": false,
314
+ "is_encoder_decoder": false,
315
+ "label2id": {
316
+ "LABEL_0": 0,
317
+ "LABEL_1": 1
318
+ },
319
+ "layer_norm_eps": 1e-05,
320
+ "length_penalty": 1.0,
321
+ "max_length": 20,
322
+ "min_length": 0,
323
+ "model_type": "clip_vision_model",
324
+ "no_repeat_ngram_size": 0,
325
+ "num_attention_heads": 16,
326
+ "num_beam_groups": 1,
327
+ "num_beams": 1,
328
+ "num_channels": 3,
329
+ "num_hidden_layers": 24,
330
+ "num_return_sequences": 1,
331
+ "output_attentions": false,
332
+ "output_hidden_states": false,
333
+ "output_scores": false,
334
+ "pad_token_id": null,
335
+ "patch_size": 14,
336
+ "prefix": null,
337
+ "problem_type": null,
338
+ "projection_dim": 768,
339
+ "pruned_heads": {},
340
+ "remove_invalid_values": false,
341
+ "repetition_penalty": 1.0,
342
+ "return_dict": true,
343
+ "return_dict_in_generate": false,
344
+ "sep_token_id": null,
345
+ "suppress_tokens": null,
346
+ "task_specific_params": null,
347
+ "temperature": 1.0,
348
+ "tf_legacy_loss": false,
349
+ "tie_encoder_decoder": false,
350
+ "tie_word_embeddings": true,
351
+ "tokenizer_class": null,
352
+ "top_k": 50,
353
+ "top_p": 1.0,
354
+ "torch_dtype": null,
355
+ "torchscript": false,
356
+ "typical_p": 1.0,
357
+ "use_bfloat16": false,
358
+ "vocab_size": 32000
359
+ },
360
+ "vision_feature_layer": -2,
361
+ "vision_feature_select_strategy": "default",
362
+ "vision_tower_pretrained": null,
363
+ "vocab_size": 151936
364
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09d602a890ac595abc484490f95694aaca98bd0d7a553ed23a8101f5abc5582
3
+ size 1582607
openvino_detokenizer.xml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_67076" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_67076">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_67087" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_67051" type="Const" version="opset1">
29
+ <data element_type="u8" shape="1582607" offset="0" size="1582607" />
30
+ <output>
31
+ <port id="0" precision="U8">
32
+ <dim>1582607</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="StringTensorUnpack_67052" type="StringTensorUnpack" version="extension">
37
+ <data mode="begins_ends" />
38
+ <input>
39
+ <port id="0" precision="U8">
40
+ <dim>1582607</dim>
41
+ </port>
42
+ </input>
43
+ <output>
44
+ <port id="1" precision="I32">
45
+ <dim>-1</dim>
46
+ </port>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="U8">
51
+ <dim>-1</dim>
52
+ </port>
53
+ </output>
54
+ </layer>
55
+ <layer id="4" name="VocabDecoder_67077" type="VocabDecoder" version="extension">
56
+ <data skip_tokens="151643, 151644, 151645, 151646" />
57
+ <input>
58
+ <port id="0" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ <port id="1" precision="I32">
63
+ <dim>-1</dim>
64
+ </port>
65
+ <port id="2" precision="I32">
66
+ <dim>-1</dim>
67
+ </port>
68
+ <port id="3" precision="U8">
69
+ <dim>-1</dim>
70
+ </port>
71
+ </input>
72
+ <output>
73
+ <port id="4" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ <port id="5" precision="I32">
77
+ <dim>-1</dim>
78
+ </port>
79
+ <port id="6" precision="I32">
80
+ <dim>-1</dim>
81
+ </port>
82
+ <port id="7" precision="I32">
83
+ <dim>-1</dim>
84
+ </port>
85
+ <port id="8" precision="U8">
86
+ <dim>-1</dim>
87
+ </port>
88
+ </output>
89
+ </layer>
90
+ <layer id="5" name="FuzeRagged_67078" type="FuzeRagged" version="extension">
91
+ <input>
92
+ <port id="0" precision="I32">
93
+ <dim>-1</dim>
94
+ </port>
95
+ <port id="1" precision="I32">
96
+ <dim>-1</dim>
97
+ </port>
98
+ <port id="2" precision="I32">
99
+ <dim>-1</dim>
100
+ </port>
101
+ <port id="3" precision="I32">
102
+ <dim>-1</dim>
103
+ </port>
104
+ </input>
105
+ <output>
106
+ <port id="4" precision="I32">
107
+ <dim>-1</dim>
108
+ </port>
109
+ <port id="5" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ </output>
113
+ </layer>
114
+ <layer id="6" name="StringTensorPack_67079" type="StringTensorPack" version="extension">
115
+ <data mode="begins_ends" />
116
+ <input>
117
+ <port id="0" precision="I32">
118
+ <dim>-1</dim>
119
+ </port>
120
+ <port id="1" precision="I32">
121
+ <dim>-1</dim>
122
+ </port>
123
+ <port id="2" precision="U8">
124
+ <dim>-1</dim>
125
+ </port>
126
+ </input>
127
+ <output>
128
+ <port id="3" precision="STRING" names="string_output">
129
+ <dim>-1</dim>
130
+ </port>
131
+ </output>
132
+ </layer>
133
+ <layer id="7" name="Result_67080" type="Result" version="opset1">
134
+ <input>
135
+ <port id="0" precision="STRING">
136
+ <dim>-1</dim>
137
+ </port>
138
+ </input>
139
+ </layer>
140
+ </layers>
141
+ <edges>
142
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
143
+ <edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
144
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
145
+ <edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
146
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
147
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
148
+ <edge from-layer="4" from-port="4" to-layer="5" to-port="0" />
149
+ <edge from-layer="4" from-port="5" to-layer="5" to-port="1" />
150
+ <edge from-layer="4" from-port="6" to-layer="5" to-port="2" />
151
+ <edge from-layer="4" from-port="7" to-layer="5" to-port="3" />
152
+ <edge from-layer="4" from-port="8" to-layer="6" to-port="2" />
153
+ <edge from-layer="5" from-port="4" to-layer="6" to-port="0" />
154
+ <edge from-layer="5" from-port="5" to-layer="6" to-port="1" />
155
+ <edge from-layer="6" from-port="3" to-layer="7" to-port="0" />
156
+ </edges>
157
+ <rt_info>
158
+ <add_attention_mask value="True" />
159
+ <add_prefix_space />
160
+ <add_special_tokens value="True" />
161
+ <chat_template value="{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '&lt;|im_start|>system&#10;You are a helpful assistant.&lt;|im_end|>&#10;' }}{% endif %}{{'&lt;|im_start|>' + message['role'] + '&#10;' + message['content'] + '&lt;|im_end|>' + '&#10;'}}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|im_start|>assistant&#10;' }}{% endif %}" />
162
+ <clean_up_tokenization_spaces />
163
+ <detokenizer_input_type value="i64" />
164
+ <eos_token_id value="151645" />
165
+ <handle_special_tokens_with_re />
166
+ <number_of_inputs value="1" />
167
+ <openvino_tokenizers_version value="2024.5.0.0" />
168
+ <openvino_version value="2024.5.0" />
169
+ <original_tokenizer_class value="&lt;class 'transformers.models.qwen2.tokenization_qwen2_fast.Qwen2TokenizerFast'>" />
170
+ <pad_token_id value="151643" />
171
+ <sentencepiece_version value="0.2.0" />
172
+ <skip_special_tokens value="True" />
173
+ <streaming_detokenizer value="False" />
174
+ <tiktoken_version value="0.8.0" />
175
+ <tokenizer_output_type value="i64" />
176
+ <tokenizers_version value="0.20.3" />
177
+ <transformers_version value="4.46.3" />
178
+ <use_max_padding value="False" />
179
+ <use_sentencepiece_backend value="False" />
180
+ <utf8_replace_mode />
181
+ <with_detokenizer value="True" />
182
+ </rt_info>
183
+ </net>
openvino_language_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6688d3f127ab5aece962c437a8cf90d8bed30179d773493859964d51382ba67d
3
+ size 6611269840
openvino_language_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_text_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69a6fa71d9ab1c13eb575495a5f72c1a9165aeebd4b0098e5d260ebe1c58d8c3
3
+ size 262144004
openvino_text_embeddings_model.xml ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="Model6" version="11">
3
+ <layers>
4
+ <layer id="0" name="input" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="input">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="self.weight" type="Const" version="opset1">
14
+ <data element_type="bf16" shape="32000, 4096" offset="0" size="262144000" />
15
+ <output>
16
+ <port id="0" precision="BF16" names="self.weight">
17
+ <dim>32000</dim>
18
+ <dim>4096</dim>
19
+ </port>
20
+ </output>
21
+ </layer>
22
+ <layer id="2" name="ov_ext::embedding/Convert" type="Convert" version="opset1">
23
+ <data destination_type="f32" />
24
+ <rt_info>
25
+ <attribute name="decompression" version="0" />
26
+ </rt_info>
27
+ <input>
28
+ <port id="0" precision="BF16">
29
+ <dim>32000</dim>
30
+ <dim>4096</dim>
31
+ </port>
32
+ </input>
33
+ <output>
34
+ <port id="1" precision="FP32">
35
+ <dim>32000</dim>
36
+ <dim>4096</dim>
37
+ </port>
38
+ </output>
39
+ </layer>
40
+ <layer id="3" name="ov_ext::embedding/Convert_1" type="Convert" version="opset1">
41
+ <data destination_type="i32" />
42
+ <input>
43
+ <port id="0" precision="I64">
44
+ <dim>-1</dim>
45
+ <dim>-1</dim>
46
+ </port>
47
+ </input>
48
+ <output>
49
+ <port id="1" precision="I32">
50
+ <dim>-1</dim>
51
+ <dim>-1</dim>
52
+ </port>
53
+ </output>
54
+ </layer>
55
+ <layer id="4" name="ov_ext::embedding/Constant" type="Const" version="opset1">
56
+ <data element_type="i32" shape="" offset="262144000" size="4" />
57
+ <output>
58
+ <port id="0" precision="I32" />
59
+ </output>
60
+ </layer>
61
+ <layer id="5" name="ov_ext::embedding/Gather" type="Gather" version="opset8">
62
+ <data batch_dims="0" />
63
+ <input>
64
+ <port id="0" precision="FP32">
65
+ <dim>32000</dim>
66
+ <dim>4096</dim>
67
+ </port>
68
+ <port id="1" precision="I32">
69
+ <dim>-1</dim>
70
+ <dim>-1</dim>
71
+ </port>
72
+ <port id="2" precision="I32" />
73
+ </input>
74
+ <output>
75
+ <port id="3" precision="FP32" names="inputs_embeds">
76
+ <dim>-1</dim>
77
+ <dim>-1</dim>
78
+ <dim>4096</dim>
79
+ </port>
80
+ </output>
81
+ </layer>
82
+ <layer id="6" name="Result_65226" type="Result" version="opset1">
83
+ <input>
84
+ <port id="0" precision="FP32">
85
+ <dim>-1</dim>
86
+ <dim>-1</dim>
87
+ <dim>4096</dim>
88
+ </port>
89
+ </input>
90
+ </layer>
91
+ </layers>
92
+ <edges>
93
+ <edge from-layer="0" from-port="0" to-layer="3" to-port="0" />
94
+ <edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
95
+ <edge from-layer="2" from-port="1" to-layer="5" to-port="0" />
96
+ <edge from-layer="3" from-port="1" to-layer="5" to-port="1" />
97
+ <edge from-layer="4" from-port="0" to-layer="5" to-port="2" />
98
+ <edge from-layer="5" from-port="3" to-layer="6" to-port="0" />
99
+ </edges>
100
+ <rt_info>
101
+ <Runtime_version value="2024.5.0-17288-7975fa5da0c-refs/pull/3856/head" />
102
+ <conversion_parameters>
103
+ <framework value="pytorch" />
104
+ <is_python_object value="True" />
105
+ </conversion_parameters>
106
+ <optimum>
107
+ <optimum_intel_version value="1.22.0.dev0+35cf1d2" />
108
+ <optimum_version value="1.23.3" />
109
+ <pytorch_version value="2.3.0" />
110
+ <transformers_version value="4.46.3" />
111
+ </optimum>
112
+ </rt_info>
113
+ </net>
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a89130f86e48fb1d71369f57a35701f4fbc6592e0c405c464deb3158c7413bf
3
+ size 3769719
openvino_tokenizer.xml ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_66969" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_66969">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_66975" type="Const" version="opset1">
13
+ <data element_type="i64" shape="" offset="0" size="8" />
14
+ <output>
15
+ <port id="0" precision="I64" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="StringTensorUnpack_66970" type="StringTensorUnpack" version="extension">
19
+ <data mode="begins_ends" />
20
+ <input>
21
+ <port id="0" precision="STRING">
22
+ <dim>-1</dim>
23
+ </port>
24
+ </input>
25
+ <output>
26
+ <port id="1" precision="I32">
27
+ <dim>-1</dim>
28
+ </port>
29
+ <port id="2" precision="I32">
30
+ <dim>-1</dim>
31
+ </port>
32
+ <port id="3" precision="U8">
33
+ <dim>-1</dim>
34
+ </port>
35
+ </output>
36
+ </layer>
37
+ <layer id="3" name="ShapeOf_66971" type="ShapeOf" version="opset3">
38
+ <data output_type="i64" />
39
+ <input>
40
+ <port id="0" precision="I32">
41
+ <dim>-1</dim>
42
+ </port>
43
+ </input>
44
+ <output>
45
+ <port id="1" precision="I64">
46
+ <dim>1</dim>
47
+ </port>
48
+ </output>
49
+ </layer>
50
+ <layer id="4" name="Constant_66972" type="Const" version="opset1">
51
+ <data element_type="i64" shape="" offset="0" size="8" />
52
+ <output>
53
+ <port id="0" precision="I64" />
54
+ </output>
55
+ </layer>
56
+ <layer id="5" name="Constant_66973" type="Const" version="opset1">
57
+ <data element_type="i64" shape="" offset="0" size="8" />
58
+ <output>
59
+ <port id="0" precision="I64" />
60
+ </output>
61
+ </layer>
62
+ <layer id="6" name="Gather_66974" type="Gather" version="opset8">
63
+ <data batch_dims="0" />
64
+ <input>
65
+ <port id="0" precision="I64">
66
+ <dim>1</dim>
67
+ </port>
68
+ <port id="1" precision="I64" />
69
+ <port id="2" precision="I64" />
70
+ </input>
71
+ <output>
72
+ <port id="3" precision="I64" />
73
+ </output>
74
+ </layer>
75
+ <layer id="7" name="Constant_66976" type="Const" version="opset1">
76
+ <data element_type="i64" shape="" offset="8" size="8" />
77
+ <output>
78
+ <port id="0" precision="I64" />
79
+ </output>
80
+ </layer>
81
+ <layer id="8" name="Range_66977" type="Range" version="opset4">
82
+ <data output_type="i32" />
83
+ <input>
84
+ <port id="0" precision="I64" />
85
+ <port id="1" precision="I64" />
86
+ <port id="2" precision="I64" />
87
+ </input>
88
+ <output>
89
+ <port id="3" precision="I32">
90
+ <dim>-1</dim>
91
+ </port>
92
+ </output>
93
+ </layer>
94
+ <layer id="9" name="Constant_66978" type="Const" version="opset1">
95
+ <data element_type="i64" shape="" offset="8" size="8" />
96
+ <output>
97
+ <port id="0" precision="I64" />
98
+ </output>
99
+ </layer>
100
+ <layer id="10" name="Constant_66979" type="Const" version="opset1">
101
+ <data element_type="i64" shape="" offset="8" size="8" />
102
+ <output>
103
+ <port id="0" precision="I64" />
104
+ </output>
105
+ </layer>
106
+ <layer id="11" name="Add_66980" type="Add" version="opset1">
107
+ <data auto_broadcast="numpy" />
108
+ <input>
109
+ <port id="0" precision="I64" />
110
+ <port id="1" precision="I64" />
111
+ </input>
112
+ <output>
113
+ <port id="2" precision="I64" />
114
+ </output>
115
+ </layer>
116
+ <layer id="12" name="Constant_66981" type="Const" version="opset1">
117
+ <data element_type="i64" shape="" offset="8" size="8" />
118
+ <output>
119
+ <port id="0" precision="I64" />
120
+ </output>
121
+ </layer>
122
+ <layer id="13" name="Range_66982" type="Range" version="opset4">
123
+ <data output_type="i32" />
124
+ <input>
125
+ <port id="0" precision="I64" />
126
+ <port id="1" precision="I64" />
127
+ <port id="2" precision="I64" />
128
+ </input>
129
+ <output>
130
+ <port id="3" precision="I32">
131
+ <dim>-1</dim>
132
+ </port>
133
+ </output>
134
+ </layer>
135
+ <layer id="14" name="Constant_67044" type="Const" version="opset1">
136
+ <data element_type="u8" shape="67" offset="16" size="67" />
137
+ <output>
138
+ <port id="0" precision="U8">
139
+ <dim>67</dim>
140
+ </port>
141
+ </output>
142
+ </layer>
143
+ <layer id="15" name="SpecialTokensSplit_67045" type="SpecialTokensSplit" version="extension">
144
+ <input>
145
+ <port id="0" precision="I32">
146
+ <dim>-1</dim>
147
+ </port>
148
+ <port id="1" precision="I32">
149
+ <dim>-1</dim>
150
+ </port>
151
+ <port id="2" precision="I32">
152
+ <dim>-1</dim>
153
+ </port>
154
+ <port id="3" precision="I32">
155
+ <dim>-1</dim>
156
+ </port>
157
+ <port id="4" precision="U8">
158
+ <dim>-1</dim>
159
+ </port>
160
+ <port id="5" precision="U8">
161
+ <dim>67</dim>
162
+ </port>
163
+ </input>
164
+ <output>
165
+ <port id="6" precision="I32">
166
+ <dim>-1</dim>
167
+ </port>
168
+ <port id="7" precision="I32">
169
+ <dim>-1</dim>
170
+ </port>
171
+ <port id="8" precision="I32">
172
+ <dim>-1</dim>
173
+ </port>
174
+ <port id="9" precision="I32">
175
+ <dim>-1</dim>
176
+ </port>
177
+ <port id="10" precision="U8">
178
+ <dim>-1</dim>
179
+ </port>
180
+ <port id="11" precision="BOOL">
181
+ <dim>-1</dim>
182
+ </port>
183
+ </output>
184
+ </layer>
185
+ <layer id="16" name="NormalizeUnicode_67046" type="NormalizeUnicode" version="extension">
186
+ <data normalization_form="NFC" />
187
+ <input>
188
+ <port id="0" precision="I32">
189
+ <dim>-1</dim>
190
+ </port>
191
+ <port id="1" precision="I32">
192
+ <dim>-1</dim>
193
+ </port>
194
+ <port id="2" precision="U8">
195
+ <dim>-1</dim>
196
+ </port>
197
+ <port id="3" precision="BOOL">
198
+ <dim>-1</dim>
199
+ </port>
200
+ </input>
201
+ <output>
202
+ <port id="4" precision="I32">
203
+ <dim>-1</dim>
204
+ </port>
205
+ <port id="5" precision="I32">
206
+ <dim>-1</dim>
207
+ </port>
208
+ <port id="6" precision="U8">
209
+ <dim>-1</dim>
210
+ </port>
211
+ <port id="7" precision="BOOL">
212
+ <dim>-1</dim>
213
+ </port>
214
+ </output>
215
+ </layer>
216
+ <layer id="17" name="Constant_67048" type="Const" version="opset1">
217
+ <data element_type="u8" shape="110" offset="83" size="110" />
218
+ <output>
219
+ <port id="0" precision="U8">
220
+ <dim>110</dim>
221
+ </port>
222
+ </output>
223
+ </layer>
224
+ <layer id="18" name="RegexSplit_67049" type="RegexSplit" version="extension">
225
+ <data behaviour="isolate" invert="false" max_splits="-1" />
226
+ <input>
227
+ <port id="0" precision="I32">
228
+ <dim>-1</dim>
229
+ </port>
230
+ <port id="1" precision="I32">
231
+ <dim>-1</dim>
232
+ </port>
233
+ <port id="2" precision="I32">
234
+ <dim>-1</dim>
235
+ </port>
236
+ <port id="3" precision="I32">
237
+ <dim>-1</dim>
238
+ </port>
239
+ <port id="4" precision="U8">
240
+ <dim>-1</dim>
241
+ </port>
242
+ <port id="5" precision="BOOL">
243
+ <dim>-1</dim>
244
+ </port>
245
+ <port id="6" precision="U8">
246
+ <dim>110</dim>
247
+ </port>
248
+ </input>
249
+ <output>
250
+ <port id="7" precision="I32">
251
+ <dim>-1</dim>
252
+ </port>
253
+ <port id="8" precision="I32">
254
+ <dim>-1</dim>
255
+ </port>
256
+ <port id="9" precision="I32">
257
+ <dim>-1</dim>
258
+ </port>
259
+ <port id="10" precision="I32">
260
+ <dim>-1</dim>
261
+ </port>
262
+ <port id="11" precision="U8">
263
+ <dim>-1</dim>
264
+ </port>
265
+ <port id="12" precision="BOOL">
266
+ <dim>-1</dim>
267
+ </port>
268
+ </output>
269
+ </layer>
270
+ <layer id="19" name="Constant_67051" type="Const" version="opset1">
271
+ <data element_type="u8" shape="1582607" offset="193" size="1582607" />
272
+ <output>
273
+ <port id="0" precision="U8">
274
+ <dim>1582607</dim>
275
+ </port>
276
+ </output>
277
+ </layer>
278
+ <layer id="20" name="StringTensorUnpack_67052" type="StringTensorUnpack" version="extension">
279
+ <data mode="begins_ends" />
280
+ <input>
281
+ <port id="0" precision="U8">
282
+ <dim>1582607</dim>
283
+ </port>
284
+ </input>
285
+ <output>
286
+ <port id="1" precision="I32">
287
+ <dim>-1</dim>
288
+ </port>
289
+ <port id="2" precision="I32">
290
+ <dim>-1</dim>
291
+ </port>
292
+ <port id="3" precision="U8">
293
+ <dim>-1</dim>
294
+ </port>
295
+ </output>
296
+ </layer>
297
+ <layer id="21" name="Constant_67057" type="Const" version="opset1">
298
+ <data element_type="u8" shape="1096915" offset="1582800" size="1096915" />
299
+ <output>
300
+ <port id="0" precision="U8">
301
+ <dim>1096915</dim>
302
+ </port>
303
+ </output>
304
+ </layer>
305
+ <layer id="22" name="StringTensorUnpack_67058" type="StringTensorUnpack" version="extension">
306
+ <data mode="begins_ends" />
307
+ <input>
308
+ <port id="0" precision="U8">
309
+ <dim>1096915</dim>
310
+ </port>
311
+ </input>
312
+ <output>
313
+ <port id="1" precision="I32">
314
+ <dim>-1</dim>
315
+ </port>
316
+ <port id="2" precision="I32">
317
+ <dim>-1</dim>
318
+ </port>
319
+ <port id="3" precision="U8">
320
+ <dim>-1</dim>
321
+ </port>
322
+ </output>
323
+ </layer>
324
+ <layer id="23" name="Constant_67060" type="Const" version="opset1">
325
+ <data element_type="u8" shape="1089910" offset="2679715" size="1089910" />
326
+ <output>
327
+ <port id="0" precision="U8">
328
+ <dim>1089910</dim>
329
+ </port>
330
+ </output>
331
+ </layer>
332
+ <layer id="24" name="StringTensorUnpack_67061" type="StringTensorUnpack" version="extension">
333
+ <data mode="begins_ends" />
334
+ <input>
335
+ <port id="0" precision="U8">
336
+ <dim>1089910</dim>
337
+ </port>
338
+ </input>
339
+ <output>
340
+ <port id="1" precision="I32">
341
+ <dim>-1</dim>
342
+ </port>
343
+ <port id="2" precision="I32">
344
+ <dim>-1</dim>
345
+ </port>
346
+ <port id="3" precision="U8">
347
+ <dim>-1</dim>
348
+ </port>
349
+ </output>
350
+ </layer>
351
+ <layer id="25" name="Constant_67054" type="Const" version="opset1">
352
+ <data element_type="u8" shape="66" offset="3769625" size="66" />
353
+ <output>
354
+ <port id="0" precision="U8">
355
+ <dim>66</dim>
356
+ </port>
357
+ </output>
358
+ </layer>
359
+ <layer id="26" name="StringTensorUnpack_67055" type="StringTensorUnpack" version="extension">
360
+ <data mode="begins_ends" />
361
+ <input>
362
+ <port id="0" precision="U8">
363
+ <dim>66</dim>
364
+ </port>
365
+ </input>
366
+ <output>
367
+ <port id="1" precision="I32">
368
+ <dim>-1</dim>
369
+ </port>
370
+ <port id="2" precision="I32">
371
+ <dim>-1</dim>
372
+ </port>
373
+ <port id="3" precision="U8">
374
+ <dim>-1</dim>
375
+ </port>
376
+ </output>
377
+ </layer>
378
+ <layer id="27" name="Constant_67062" type="Const" version="opset1">
379
+ <data element_type="i32" shape="4" offset="3769691" size="16" />
380
+ <output>
381
+ <port id="0" precision="I32">
382
+ <dim>4</dim>
383
+ </port>
384
+ </output>
385
+ </layer>
386
+ <layer id="28" name="BPETokenizer_67063" type="BPETokenizer" version="extension">
387
+ <data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="30328" />
388
+ <input>
389
+ <port id="0" precision="I32">
390
+ <dim>-1</dim>
391
+ </port>
392
+ <port id="1" precision="I32">
393
+ <dim>-1</dim>
394
+ </port>
395
+ <port id="2" precision="I32">
396
+ <dim>-1</dim>
397
+ </port>
398
+ <port id="3" precision="I32">
399
+ <dim>-1</dim>
400
+ </port>
401
+ <port id="4" precision="U8">
402
+ <dim>-1</dim>
403
+ </port>
404
+ <port id="5" precision="I32">
405
+ <dim>-1</dim>
406
+ </port>
407
+ <port id="6" precision="I32">
408
+ <dim>-1</dim>
409
+ </port>
410
+ <port id="7" precision="U8">
411
+ <dim>-1</dim>
412
+ </port>
413
+ <port id="8" precision="I32">
414
+ <dim>-1</dim>
415
+ </port>
416
+ <port id="9" precision="I32">
417
+ <dim>-1</dim>
418
+ </port>
419
+ <port id="10" precision="U8">
420
+ <dim>-1</dim>
421
+ </port>
422
+ <port id="11" precision="I32">
423
+ <dim>-1</dim>
424
+ </port>
425
+ <port id="12" precision="I32">
426
+ <dim>-1</dim>
427
+ </port>
428
+ <port id="13" precision="U8">
429
+ <dim>-1</dim>
430
+ </port>
431
+ <port id="14" precision="I32">
432
+ <dim>-1</dim>
433
+ </port>
434
+ <port id="15" precision="I32">
435
+ <dim>-1</dim>
436
+ </port>
437
+ <port id="16" precision="U8">
438
+ <dim>-1</dim>
439
+ </port>
440
+ <port id="17" precision="I32">
441
+ <dim>4</dim>
442
+ </port>
443
+ </input>
444
+ <output>
445
+ <port id="18" precision="I32">
446
+ <dim>-1</dim>
447
+ </port>
448
+ <port id="19" precision="I32">
449
+ <dim>-1</dim>
450
+ </port>
451
+ <port id="20" precision="I32">
452
+ <dim>-1</dim>
453
+ </port>
454
+ </output>
455
+ </layer>
456
+ <layer id="29" name="Subtract_67064" type="Subtract" version="opset1">
457
+ <data auto_broadcast="numpy" />
458
+ <input>
459
+ <port id="0" precision="I32">
460
+ <dim>-1</dim>
461
+ </port>
462
+ <port id="1" precision="I32">
463
+ <dim>-1</dim>
464
+ </port>
465
+ </input>
466
+ <output>
467
+ <port id="2" precision="I32">
468
+ <dim>-1</dim>
469
+ </port>
470
+ </output>
471
+ </layer>
472
+ <layer id="30" name="Constant_67065" type="Const" version="opset1">
473
+ <data element_type="i32" shape="" offset="3769707" size="4" />
474
+ <output>
475
+ <port id="0" precision="I32" />
476
+ </output>
477
+ </layer>
478
+ <layer id="31" name="Minimum_67066" type="Minimum" version="opset1">
479
+ <data auto_broadcast="numpy" />
480
+ <input>
481
+ <port id="0" precision="I32">
482
+ <dim>-1</dim>
483
+ </port>
484
+ <port id="1" precision="I32" />
485
+ </input>
486
+ <output>
487
+ <port id="2" precision="I32">
488
+ <dim>-1</dim>
489
+ </port>
490
+ </output>
491
+ </layer>
492
+ <layer id="32" name="Add_67067" type="Add" version="opset1">
493
+ <data auto_broadcast="numpy" />
494
+ <input>
495
+ <port id="0" precision="I32">
496
+ <dim>-1</dim>
497
+ </port>
498
+ <port id="1" precision="I32">
499
+ <dim>-1</dim>
500
+ </port>
501
+ </input>
502
+ <output>
503
+ <port id="2" precision="I32">
504
+ <dim>-1</dim>
505
+ </port>
506
+ </output>
507
+ </layer>
508
+ <layer id="33" name="Subtract_67068" type="Subtract" version="opset1">
509
+ <data auto_broadcast="numpy" />
510
+ <input>
511
+ <port id="0" precision="I32">
512
+ <dim>-1</dim>
513
+ </port>
514
+ <port id="1" precision="I32">
515
+ <dim>-1</dim>
516
+ </port>
517
+ </input>
518
+ <output>
519
+ <port id="2" precision="I32">
520
+ <dim>-1</dim>
521
+ </port>
522
+ </output>
523
+ </layer>
524
+ <layer id="34" name="Constant_67069" type="Const" version="opset1">
525
+ <data element_type="i32" shape="" offset="3769711" size="4" />
526
+ <output>
527
+ <port id="0" precision="I32" />
528
+ </output>
529
+ </layer>
530
+ <layer id="35" name="ReduceMax_67070" type="ReduceMax" version="opset1">
531
+ <data keep_dims="false" />
532
+ <input>
533
+ <port id="0" precision="I32">
534
+ <dim>-1</dim>
535
+ </port>
536
+ <port id="1" precision="I32" />
537
+ </input>
538
+ <output>
539
+ <port id="2" precision="I32" />
540
+ </output>
541
+ </layer>
542
+ <layer id="36" name="Constant_67071" type="Const" version="opset1">
543
+ <data element_type="i32" shape="" offset="3769715" size="4" />
544
+ <output>
545
+ <port id="0" precision="I32" />
546
+ </output>
547
+ </layer>
548
+ <layer id="37" name="RaggedToDense_67072" type="RaggedToDense" version="extension">
549
+ <data pad_right="true" />
550
+ <input>
551
+ <port id="0" precision="I32">
552
+ <dim>-1</dim>
553
+ </port>
554
+ <port id="1" precision="I32">
555
+ <dim>-1</dim>
556
+ </port>
557
+ <port id="2" precision="I32">
558
+ <dim>-1</dim>
559
+ </port>
560
+ <port id="3" precision="I32" />
561
+ <port id="4" precision="I32" />
562
+ </input>
563
+ <output>
564
+ <port id="5" precision="I32">
565
+ <dim>-1</dim>
566
+ <dim>-1</dim>
567
+ </port>
568
+ <port id="6" precision="BOOL">
569
+ <dim>-1</dim>
570
+ <dim>-1</dim>
571
+ </port>
572
+ </output>
573
+ </layer>
574
+ <layer id="38" name="Convert_67073" type="Convert" version="opset1">
575
+ <data destination_type="i32" />
576
+ <input>
577
+ <port id="0" precision="BOOL">
578
+ <dim>-1</dim>
579
+ <dim>-1</dim>
580
+ </port>
581
+ </input>
582
+ <output>
583
+ <port id="1" precision="I32">
584
+ <dim>-1</dim>
585
+ <dim>-1</dim>
586
+ </port>
587
+ </output>
588
+ </layer>
589
+ <layer id="39" name="Convert_67073" type="Convert" version="opset1">
590
+ <data destination_type="i64" />
591
+ <input>
592
+ <port id="0" precision="I32">
593
+ <dim>-1</dim>
594
+ <dim>-1</dim>
595
+ </port>
596
+ </input>
597
+ <output>
598
+ <port id="1" precision="I64" names="attention_mask">
599
+ <dim>-1</dim>
600
+ <dim>-1</dim>
601
+ </port>
602
+ </output>
603
+ </layer>
604
+ <layer id="41" name="RaggedToDense_67072.0" type="Convert" version="opset1">
605
+ <data destination_type="i64" />
606
+ <input>
607
+ <port id="0" precision="I32">
608
+ <dim>-1</dim>
609
+ <dim>-1</dim>
610
+ </port>
611
+ </input>
612
+ <output>
613
+ <port id="1" precision="I64" names="input_ids">
614
+ <dim>-1</dim>
615
+ <dim>-1</dim>
616
+ </port>
617
+ </output>
618
+ </layer>
619
+ <layer id="42" name="Result_67074" type="Result" version="opset1">
620
+ <input>
621
+ <port id="0" precision="I64">
622
+ <dim>-1</dim>
623
+ <dim>-1</dim>
624
+ </port>
625
+ </input>
626
+ </layer>
627
+ <layer id="40" name="Result_67075" type="Result" version="opset1">
628
+ <input>
629
+ <port id="0" precision="I64">
630
+ <dim>-1</dim>
631
+ <dim>-1</dim>
632
+ </port>
633
+ </input>
634
+ </layer>
635
+ </layers>
636
+ <edges>
637
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
638
+ <edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
639
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
640
+ <edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
641
+ <edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
642
+ <edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
643
+ <edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
644
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
645
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
646
+ <edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
647
+ <edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
648
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
649
+ <edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
650
+ <edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
651
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
652
+ <edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
653
+ <edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
654
+ <edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
655
+ <edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
656
+ <edge from-layer="15" from-port="9" to-layer="16" to-port="1" />
657
+ <edge from-layer="15" from-port="7" to-layer="18" to-port="1" />
658
+ <edge from-layer="15" from-port="6" to-layer="18" to-port="0" />
659
+ <edge from-layer="15" from-port="11" to-layer="16" to-port="3" />
660
+ <edge from-layer="15" from-port="10" to-layer="16" to-port="2" />
661
+ <edge from-layer="15" from-port="8" to-layer="16" to-port="0" />
662
+ <edge from-layer="16" from-port="4" to-layer="18" to-port="2" />
663
+ <edge from-layer="16" from-port="5" to-layer="18" to-port="3" />
664
+ <edge from-layer="16" from-port="6" to-layer="18" to-port="4" />
665
+ <edge from-layer="16" from-port="7" to-layer="18" to-port="5" />
666
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="6" />
667
+ <edge from-layer="18" from-port="11" to-layer="28" to-port="4" />
668
+ <edge from-layer="18" from-port="10" to-layer="28" to-port="3" />
669
+ <edge from-layer="18" from-port="9" to-layer="28" to-port="2" />
670
+ <edge from-layer="18" from-port="8" to-layer="28" to-port="1" />
671
+ <edge from-layer="18" from-port="7" to-layer="28" to-port="0" />
672
+ <edge from-layer="19" from-port="0" to-layer="20" to-port="0" />
673
+ <edge from-layer="20" from-port="1" to-layer="28" to-port="5" />
674
+ <edge from-layer="20" from-port="2" to-layer="28" to-port="6" />
675
+ <edge from-layer="20" from-port="3" to-layer="28" to-port="7" />
676
+ <edge from-layer="21" from-port="0" to-layer="22" to-port="0" />
677
+ <edge from-layer="22" from-port="1" to-layer="28" to-port="8" />
678
+ <edge from-layer="22" from-port="2" to-layer="28" to-port="9" />
679
+ <edge from-layer="22" from-port="3" to-layer="28" to-port="10" />
680
+ <edge from-layer="23" from-port="0" to-layer="24" to-port="0" />
681
+ <edge from-layer="24" from-port="1" to-layer="28" to-port="11" />
682
+ <edge from-layer="24" from-port="2" to-layer="28" to-port="12" />
683
+ <edge from-layer="24" from-port="3" to-layer="28" to-port="13" />
684
+ <edge from-layer="25" from-port="0" to-layer="26" to-port="0" />
685
+ <edge from-layer="26" from-port="1" to-layer="28" to-port="14" />
686
+ <edge from-layer="26" from-port="2" to-layer="28" to-port="15" />
687
+ <edge from-layer="26" from-port="3" to-layer="28" to-port="16" />
688
+ <edge from-layer="27" from-port="0" to-layer="28" to-port="17" />
689
+ <edge from-layer="28" from-port="20" to-layer="37" to-port="2" />
690
+ <edge from-layer="28" from-port="18" to-layer="29" to-port="1" />
691
+ <edge from-layer="28" from-port="18" to-layer="37" to-port="0" />
692
+ <edge from-layer="28" from-port="18" to-layer="33" to-port="1" />
693
+ <edge from-layer="28" from-port="18" to-layer="32" to-port="0" />
694
+ <edge from-layer="28" from-port="19" to-layer="29" to-port="0" />
695
+ <edge from-layer="29" from-port="2" to-layer="31" to-port="0" />
696
+ <edge from-layer="30" from-port="0" to-layer="31" to-port="1" />
697
+ <edge from-layer="31" from-port="2" to-layer="32" to-port="1" />
698
+ <edge from-layer="32" from-port="2" to-layer="33" to-port="0" />
699
+ <edge from-layer="32" from-port="2" to-layer="37" to-port="1" />
700
+ <edge from-layer="33" from-port="2" to-layer="35" to-port="0" />
701
+ <edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
702
+ <edge from-layer="35" from-port="2" to-layer="37" to-port="3" />
703
+ <edge from-layer="36" from-port="0" to-layer="37" to-port="4" />
704
+ <edge from-layer="37" from-port="6" to-layer="38" to-port="0" />
705
+ <edge from-layer="37" from-port="5" to-layer="41" to-port="0" />
706
+ <edge from-layer="38" from-port="1" to-layer="39" to-port="0" />
707
+ <edge from-layer="39" from-port="1" to-layer="40" to-port="0" />
708
+ <edge from-layer="41" from-port="1" to-layer="42" to-port="0" />
709
+ </edges>
710
+ <rt_info>
711
+ <add_attention_mask value="True" />
712
+ <add_prefix_space />
713
+ <add_special_tokens value="True" />
714
+ <chat_template value="{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '&lt;|im_start|>system&#10;You are a helpful assistant.&lt;|im_end|>&#10;' }}{% endif %}{{'&lt;|im_start|>' + message['role'] + '&#10;' + message['content'] + '&lt;|im_end|>' + '&#10;'}}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|im_start|>assistant&#10;' }}{% endif %}" />
715
+ <clean_up_tokenization_spaces />
716
+ <detokenizer_input_type value="i64" />
717
+ <eos_token_id value="151645" />
718
+ <handle_special_tokens_with_re />
719
+ <number_of_inputs value="1" />
720
+ <openvino_tokenizers_version value="2024.5.0.0" />
721
+ <openvino_version value="2024.5.0" />
722
+ <original_tokenizer_class value="&lt;class 'transformers.models.qwen2.tokenization_qwen2_fast.Qwen2TokenizerFast'>" />
723
+ <pad_token_id value="151643" />
724
+ <sentencepiece_version value="0.2.0" />
725
+ <skip_special_tokens value="True" />
726
+ <streaming_detokenizer value="False" />
727
+ <tiktoken_version value="0.8.0" />
728
+ <tokenizer_output_type value="i64" />
729
+ <tokenizers_version value="0.20.3" />
730
+ <transformers_version value="4.46.3" />
731
+ <use_max_padding value="False" />
732
+ <use_sentencepiece_backend value="False" />
733
+ <utf8_replace_mode />
734
+ <with_detokenizer value="True" />
735
+ </rt_info>
736
+ </net>
openvino_vision_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f6853c9a20c4ef79652e10ba029e8aab2f6fa9c45d3c2d7a8008de340af7cab
3
+ size 625543316
openvino_vision_embeddings_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "LlavaProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 384,
22
+ "width": 384
23
+ }
24
+ }
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "image_token": "<image>",
3
+ "patch_size": null,
4
+ "processor_class": "LlavaProcessor",
5
+ "vision_feature_select_strategy": null
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32e8f623d8dce60b5a93496ec810434ef744287ac041cf2c6032743a3578baa5
3
+ size 11418450
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<image>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ }
36
+ },
37
+ "additional_special_tokens": [
38
+ "<|im_start|>",
39
+ "<|im_end|>"
40
+ ],
41
+ "bos_token": null,
42
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
43
+ "clean_up_tokenization_spaces": false,
44
+ "eos_token": "<|im_end|>",
45
+ "errors": "replace",
46
+ "model_max_length": 32768,
47
+ "pad_token": "<|endoftext|>",
48
+ "padding_side": "right",
49
+ "processor_class": "LlavaProcessor",
50
+ "split_special_tokens": false,
51
+ "tokenizer_class": "Qwen2Tokenizer",
52
+ "unk_token": null
53
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff