File size: 1,825 Bytes
06c1839
 
 
 
4eec796
 
06c1839
 
 
 
 
 
 
 
 
 
4eec796
06c1839
4eec796
06c1839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- enoriega/odinsynth_dataset
model-index:
- name: rule_learning_test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rule_learning_test

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the enoriega/odinsynth_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1255

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 1000
- total_train_batch_size: 8000
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1764        | 0.32  | 20   | 0.2303          |
| 0.145         | 0.64  | 40   | 0.1470          |
| 0.129         | 0.96  | 60   | 0.1321          |
| 0.1256        | 1.29  | 80   | 0.1265          |
| 0.1304        | 1.61  | 100  | 0.1252          |
| 0.1235        | 1.93  | 120  | 0.1260          |
| 0.125         | 2.26  | 140  | 0.1261          |
| 0.1263        | 2.58  | 160  | 0.1262          |
| 0.1244        | 2.9   | 180  | 0.1256          |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.1
- Tokenizers 0.12.1