enrique2701
commited on
Commit
•
25cf054
1
Parent(s):
b32f5a2
Upload DQN MountainCar-v0 trained agent
Browse files- DQN_Mountain.zip +3 -0
- DQN_Mountain/_stable_baselines3_version +1 -0
- DQN_Mountain/data +126 -0
- DQN_Mountain/policy.optimizer.pth +3 -0
- DQN_Mountain/policy.pth +3 -0
- DQN_Mountain/pytorch_variables.pth +3 -0
- DQN_Mountain/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
DQN_Mountain.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bae38abf95d4a9ec1d94819a550b4645fc16a3fbf0656d48ff395697e923ec2
|
3 |
+
size 1103057
|
DQN_Mountain/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
DQN_Mountain/data
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7b8d265b7880>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7b8d265b7910>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7b8d265b79a0>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7b8d265b7a30>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7b8d265b7ac0>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7b8d265b7b50>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7b8d265b7be0>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b8d265c9bc0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
256,
|
22 |
+
256
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"num_timesteps": 120000,
|
26 |
+
"_total_timesteps": 120000,
|
27 |
+
"_num_timesteps_at_start": 0,
|
28 |
+
"seed": null,
|
29 |
+
"action_noise": null,
|
30 |
+
"start_time": 1708485765879044861,
|
31 |
+
"learning_rate": 0.004,
|
32 |
+
"tensorboard_log": null,
|
33 |
+
"_last_obs": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAID4a7/u3x89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAH/2db9+4RE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_episode_num": 720,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": 0.0,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFrAAAAAAACMAWyUS2uMAXSUR0B1RvYVZcLSdX2UKGgGR8BagAAAAAAAaAdLamgIR0B1TMj7hvR7dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B1UveWOZLJdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B1WTrIHTqjdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B1X/MINVindX2UKGgGR8BXgAAAAAAAaAdLXmgIR0B1ZWYPXkHVdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B1a56Tnq3WdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1cN4LThHcdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1dzqD9OyndX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1fgr1/Ue/dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1h/X9R77bdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1jM2P1ct5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B1kraJyhi9dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1nNqoIfKZdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B1poUBXCCSdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B1rSfh/Aj6dX2UKGgGR8BloAAAAAAAaAdLrWgIR0B1tqiCaqjrdX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B1vCfseGO/dX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B1xJ+az/p/dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B1zVuTA31jdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B13SAwwj+rdX2UKGgGR8BgwAAAAAAAaAdLhmgIR0B15A+5e7cxdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B17tAood+5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B19LUe+23KdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B1/mq+8Gs4dX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B2CDvc8DB/dX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B2EBA2Q4jsdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2FlOsT37DdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2HG8yvcJudX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Ik4CIUJwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B2Lb8P4EfUdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B2M+J9AooedX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2OjK3d9DydX2UKGgGR8BaAAAAAAAAaAdLaGgIR0B2QBUwSJ0odX2UKGgGR8BowAAAAAAAaAdLxmgIR0B2SnMTviLmdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0B2UUFwDNhWdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2V4lpoK2KdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Xlwo9cKPdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2Y5/+bVjJdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B2bZmRNh3JdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2c6s7uDzzdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B2edXIU8FIdX2UKGgGR8BagAAAAAAAaAdLamgIR0B2gOzLOiWWdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B2iEJa7mMgdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2kLmaH9FXdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B2mXZ9NN8FdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2n+1+iJwbdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B2px8b70nPdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2rUz0pVjqdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B2t1Dst03gdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B2vkm7aqS6dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B2xKbUgB91dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2yu5mRNh3dX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B20HdUKiPAdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B21q4H5aePdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B24HStvGZNdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B25sm2LHdXdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B27wKa5PM0dX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B2+LTF2mpEdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0B2/3Mr3CbddX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3BbsRg7YDdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B3DHhjvuw5dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3EqI68xsVdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B3GYA7xNItdX2UKGgGR8BagAAAAAAAaAdLamgIR0B3Ho0VJtiydX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B3J40+C9RKdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B3L/lA/s3RdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3OZjCpFTedX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B3Q/Zh8YygdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3TFEofCAMdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3W57AtWdVdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B3YtIczZYgdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3ausXBP9DdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B3dLx7RfF8dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B3fdpsXSBtdX2UKGgGR8BogAAAAAAAaAdLxGgIR0B3iQXJo0yhdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3kdA2Q4jsdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3mSEdvKlpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B3o7nFHavidX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B3qvIsAeaKdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B3tMM+eOGTdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3vXdP+GXYdX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B3yIGFBY3edX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B30S4XoC+2dX2UKGgGR8BewAAAAAAAaAdLe2gIR0B32Mj0L+gldX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B34n/FR51OdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B36rwZwXImdX2UKGgGR8BZAAAAAAAAaAdLZGgIR0B37/U2DQJHdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B3+e0gKWszdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0B4AN2NedCmdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B4DIeKbaysdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B4GiSJTER8dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B4IgFmnO0LdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4KHGS6lLwdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B4MuanaWX1dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4OUfIS13MdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B4QHIPsiSrdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B4R8+TvAoHdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B4TVjd56dEdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B4UtUedTYNdWUu"
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 59504,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
|
62 |
+
"dtype": "float32",
|
63 |
+
"bounded_below": "[ True True]",
|
64 |
+
"bounded_above": "[ True True]",
|
65 |
+
"_shape": [
|
66 |
+
2
|
67 |
+
],
|
68 |
+
"low": "[-1.2 -0.07]",
|
69 |
+
"high": "[0.6 0.07]",
|
70 |
+
"low_repr": "[-1.2 -0.07]",
|
71 |
+
"high_repr": "[0.6 0.07]",
|
72 |
+
"_np_random": null
|
73 |
+
},
|
74 |
+
"action_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
76 |
+
":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQk9aXLTU0T+puMPTU31/LSYwDaW5jlIoQlV5dRRqtFXWVH+u4dHM2aHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF4Wi/+QB1YnViLg==",
|
77 |
+
"n": "3",
|
78 |
+
"start": "0",
|
79 |
+
"_shape": [],
|
80 |
+
"dtype": "int64",
|
81 |
+
"_np_random": "Generator(PCG64)"
|
82 |
+
},
|
83 |
+
"n_envs": 1,
|
84 |
+
"buffer_size": 10000,
|
85 |
+
"batch_size": 128,
|
86 |
+
"learning_starts": 1000,
|
87 |
+
"tau": 1.0,
|
88 |
+
"gamma": 0.98,
|
89 |
+
"gradient_steps": 8,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7b8d265a3d00>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7b8d265a3d90>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7b8d265a3e20>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7b8d265a3eb0>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b8d30c17e00>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.07,
|
111 |
+
"exploration_fraction": 0.2,
|
112 |
+
"target_update_interval": 600,
|
113 |
+
"_n_calls": 120000,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.07,
|
116 |
+
"lr_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
119 |
+
},
|
120 |
+
"batch_norm_stats": [],
|
121 |
+
"batch_norm_stats_target": [],
|
122 |
+
"exploration_schedule": {
|
123 |
+
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/seuFHrhR7IWUUpRoN0c/yZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
125 |
+
}
|
126 |
+
}
|
DQN_Mountain/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ba925405e5b16fad623893d26d4a3bc6a8874be098828ffa053e3d6136511a8
|
3 |
+
size 543904
|
DQN_Mountain/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02179085457227ec11f7ce20bc7bcda7bcdc862c69bd8990e287a773b089fe71
|
3 |
+
size 543026
|
DQN_Mountain/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
DQN_Mountain/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCar-v0
|
16 |
+
type: MountainCar-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -111.80 +/- 17.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **MountainCar-v0**
|
25 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7b8d265b7880>", "_build": "<function DQNPolicy._build at 0x7b8d265b7910>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7b8d265b79a0>", "forward": "<function DQNPolicy.forward at 0x7b8d265b7a30>", "_predict": "<function DQNPolicy._predict at 0x7b8d265b7ac0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7b8d265b7b50>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7b8d265b7be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b8d265c9bc0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 120000, "_total_timesteps": 120000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708485765879044861, "learning_rate": 0.004, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAID4a7/u3x89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAH/2db9+4RE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_episode_num": 720, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFrAAAAAAACMAWyUS2uMAXSUR0B1RvYVZcLSdX2UKGgGR8BagAAAAAAAaAdLamgIR0B1TMj7hvR7dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B1UveWOZLJdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B1WTrIHTqjdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B1X/MINVindX2UKGgGR8BXgAAAAAAAaAdLXmgIR0B1ZWYPXkHVdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B1a56Tnq3WdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1cN4LThHcdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1dzqD9OyndX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1fgr1/Ue/dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1h/X9R77bdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1jM2P1ct5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B1kraJyhi9dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1nNqoIfKZdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B1poUBXCCSdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B1rSfh/Aj6dX2UKGgGR8BloAAAAAAAaAdLrWgIR0B1tqiCaqjrdX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B1vCfseGO/dX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B1xJ+az/p/dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B1zVuTA31jdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B13SAwwj+rdX2UKGgGR8BgwAAAAAAAaAdLhmgIR0B15A+5e7cxdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B17tAood+5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B19LUe+23KdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B1/mq+8Gs4dX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B2CDvc8DB/dX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B2EBA2Q4jsdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2FlOsT37DdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2HG8yvcJudX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Ik4CIUJwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B2Lb8P4EfUdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B2M+J9AooedX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2OjK3d9DydX2UKGgGR8BaAAAAAAAAaAdLaGgIR0B2QBUwSJ0odX2UKGgGR8BowAAAAAAAaAdLxmgIR0B2SnMTviLmdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0B2UUFwDNhWdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2V4lpoK2KdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Xlwo9cKPdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2Y5/+bVjJdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B2bZmRNh3JdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2c6s7uDzzdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B2edXIU8FIdX2UKGgGR8BagAAAAAAAaAdLamgIR0B2gOzLOiWWdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B2iEJa7mMgdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2kLmaH9FXdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B2mXZ9NN8FdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2n+1+iJwbdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B2px8b70nPdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2rUz0pVjqdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B2t1Dst03gdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B2vkm7aqS6dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B2xKbUgB91dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2yu5mRNh3dX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B20HdUKiPAdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B21q4H5aePdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B24HStvGZNdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B25sm2LHdXdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B27wKa5PM0dX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B2+LTF2mpEdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0B2/3Mr3CbddX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3BbsRg7YDdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B3DHhjvuw5dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3EqI68xsVdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B3GYA7xNItdX2UKGgGR8BagAAAAAAAaAdLamgIR0B3Ho0VJtiydX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B3J40+C9RKdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B3L/lA/s3RdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3OZjCpFTedX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B3Q/Zh8YygdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3TFEofCAMdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3W57AtWdVdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B3YtIczZYgdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3ausXBP9DdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B3dLx7RfF8dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B3fdpsXSBtdX2UKGgGR8BogAAAAAAAaAdLxGgIR0B3iQXJo0yhdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3kdA2Q4jsdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3mSEdvKlpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B3o7nFHavidX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B3qvIsAeaKdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B3tMM+eOGTdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3vXdP+GXYdX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B3yIGFBY3edX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B30S4XoC+2dX2UKGgGR8BewAAAAAAAaAdLe2gIR0B32Mj0L+gldX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B34n/FR51OdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B36rwZwXImdX2UKGgGR8BZAAAAAAAAaAdLZGgIR0B37/U2DQJHdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B3+e0gKWszdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0B4AN2NedCmdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B4DIeKbaysdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B4GiSJTER8dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B4IgFmnO0LdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4KHGS6lLwdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B4MuanaWX1dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4OUfIS13MdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B4QHIPsiSrdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B4R8+TvAoHdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B4TVjd56dEdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B4UtUedTYNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 59504, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQk9aXLTU0T+puMPTU31/LSYwDaW5jlIoQlV5dRRqtFXWVH+u4dHM2aHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF4Wi/+QB1YnViLg==", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7b8d265a3d00>", "add": "<function ReplayBuffer.add at 0x7b8d265a3d90>", "sample": "<function ReplayBuffer.sample at 0x7b8d265a3e20>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7b8d265a3eb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b8d30c17e00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 600, "_n_calls": 120000, "max_grad_norm": 10, "exploration_rate": 0.07, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/seuFHrhR7IWUUpRoN0c/yZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (204 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -111.8, "std_reward": 17.713271860387625, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-21T03:31:26.073267"}
|