enrique2701 commited on
Commit
25cf054
1 Parent(s): b32f5a2

Upload DQN MountainCar-v0 trained agent

Browse files
DQN_Mountain.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bae38abf95d4a9ec1d94819a550b4645fc16a3fbf0656d48ff395697e923ec2
3
+ size 1103057
DQN_Mountain/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
DQN_Mountain/data ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7b8d265b7880>",
9
+ "_build": "<function DQNPolicy._build at 0x7b8d265b7910>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7b8d265b79a0>",
11
+ "forward": "<function DQNPolicy.forward at 0x7b8d265b7a30>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7b8d265b7ac0>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7b8d265b7b50>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7b8d265b7be0>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7b8d265c9bc0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 256,
22
+ 256
23
+ ]
24
+ },
25
+ "num_timesteps": 120000,
26
+ "_total_timesteps": 120000,
27
+ "_num_timesteps_at_start": 0,
28
+ "seed": null,
29
+ "action_noise": null,
30
+ "start_time": 1708485765879044861,
31
+ "learning_rate": 0.004,
32
+ "tensorboard_log": null,
33
+ "_last_obs": {
34
+ ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAID4a7/u3x89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAH/2db9+4RE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
44
+ },
45
+ "_episode_num": 720,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": 0.0,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFrAAAAAAACMAWyUS2uMAXSUR0B1RvYVZcLSdX2UKGgGR8BagAAAAAAAaAdLamgIR0B1TMj7hvR7dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B1UveWOZLJdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B1WTrIHTqjdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B1X/MINVindX2UKGgGR8BXgAAAAAAAaAdLXmgIR0B1ZWYPXkHVdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B1a56Tnq3WdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1cN4LThHcdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1dzqD9OyndX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1fgr1/Ue/dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1h/X9R77bdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1jM2P1ct5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B1kraJyhi9dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1nNqoIfKZdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B1poUBXCCSdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B1rSfh/Aj6dX2UKGgGR8BloAAAAAAAaAdLrWgIR0B1tqiCaqjrdX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B1vCfseGO/dX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B1xJ+az/p/dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B1zVuTA31jdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B13SAwwj+rdX2UKGgGR8BgwAAAAAAAaAdLhmgIR0B15A+5e7cxdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B17tAood+5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B19LUe+23KdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B1/mq+8Gs4dX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B2CDvc8DB/dX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B2EBA2Q4jsdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2FlOsT37DdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2HG8yvcJudX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Ik4CIUJwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B2Lb8P4EfUdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B2M+J9AooedX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2OjK3d9DydX2UKGgGR8BaAAAAAAAAaAdLaGgIR0B2QBUwSJ0odX2UKGgGR8BowAAAAAAAaAdLxmgIR0B2SnMTviLmdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0B2UUFwDNhWdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2V4lpoK2KdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Xlwo9cKPdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2Y5/+bVjJdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B2bZmRNh3JdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2c6s7uDzzdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B2edXIU8FIdX2UKGgGR8BagAAAAAAAaAdLamgIR0B2gOzLOiWWdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B2iEJa7mMgdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2kLmaH9FXdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B2mXZ9NN8FdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2n+1+iJwbdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B2px8b70nPdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2rUz0pVjqdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B2t1Dst03gdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B2vkm7aqS6dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B2xKbUgB91dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2yu5mRNh3dX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B20HdUKiPAdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B21q4H5aePdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B24HStvGZNdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B25sm2LHdXdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B27wKa5PM0dX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B2+LTF2mpEdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0B2/3Mr3CbddX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3BbsRg7YDdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B3DHhjvuw5dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3EqI68xsVdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B3GYA7xNItdX2UKGgGR8BagAAAAAAAaAdLamgIR0B3Ho0VJtiydX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B3J40+C9RKdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B3L/lA/s3RdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3OZjCpFTedX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B3Q/Zh8YygdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3TFEofCAMdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3W57AtWdVdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B3YtIczZYgdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3ausXBP9DdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B3dLx7RfF8dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B3fdpsXSBtdX2UKGgGR8BogAAAAAAAaAdLxGgIR0B3iQXJo0yhdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3kdA2Q4jsdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3mSEdvKlpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B3o7nFHavidX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B3qvIsAeaKdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B3tMM+eOGTdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3vXdP+GXYdX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B3yIGFBY3edX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B30S4XoC+2dX2UKGgGR8BewAAAAAAAaAdLe2gIR0B32Mj0L+gldX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B34n/FR51OdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B36rwZwXImdX2UKGgGR8BZAAAAAAAAaAdLZGgIR0B37/U2DQJHdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B3+e0gKWszdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0B4AN2NedCmdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B4DIeKbaysdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B4GiSJTER8dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B4IgFmnO0LdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4KHGS6lLwdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B4MuanaWX1dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4OUfIS13MdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B4QHIPsiSrdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B4R8+TvAoHdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B4TVjd56dEdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B4UtUedTYNdWUu"
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 59504,
59
+ "observation_space": {
60
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
+ ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
62
+ "dtype": "float32",
63
+ "bounded_below": "[ True True]",
64
+ "bounded_above": "[ True True]",
65
+ "_shape": [
66
+ 2
67
+ ],
68
+ "low": "[-1.2 -0.07]",
69
+ "high": "[0.6 0.07]",
70
+ "low_repr": "[-1.2 -0.07]",
71
+ "high_repr": "[0.6 0.07]",
72
+ "_np_random": null
73
+ },
74
+ "action_space": {
75
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
+ ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQk9aXLTU0T+puMPTU31/LSYwDaW5jlIoQlV5dRRqtFXWVH+u4dHM2aHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF4Wi/+QB1YnViLg==",
77
+ "n": "3",
78
+ "start": "0",
79
+ "_shape": [],
80
+ "dtype": "int64",
81
+ "_np_random": "Generator(PCG64)"
82
+ },
83
+ "n_envs": 1,
84
+ "buffer_size": 10000,
85
+ "batch_size": 128,
86
+ "learning_starts": 1000,
87
+ "tau": 1.0,
88
+ "gamma": 0.98,
89
+ "gradient_steps": 8,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7b8d265a3d00>",
97
+ "add": "<function ReplayBuffer.add at 0x7b8d265a3d90>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7b8d265a3e20>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7b8d265a3eb0>",
100
+ "__abstractmethods__": "frozenset()",
101
+ "_abc_impl": "<_abc._abc_data object at 0x7b8d30c17e00>"
102
+ },
103
+ "replay_buffer_kwargs": {},
104
+ "train_freq": {
105
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
106
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
107
+ },
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.07,
111
+ "exploration_fraction": 0.2,
112
+ "target_update_interval": 600,
113
+ "_n_calls": 120000,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.07,
116
+ "lr_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
119
+ },
120
+ "batch_norm_stats": [],
121
+ "batch_norm_stats_target": [],
122
+ "exploration_schedule": {
123
+ ":type:": "<class 'function'>",
124
+ ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/seuFHrhR7IWUUpRoN0c/yZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
125
+ }
126
+ }
DQN_Mountain/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ba925405e5b16fad623893d26d4a3bc6a8874be098828ffa053e3d6136511a8
3
+ size 543904
DQN_Mountain/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02179085457227ec11f7ce20bc7bcda7bcdc862c69bd8990e287a773b089fe71
3
+ size 543026
DQN_Mountain/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
DQN_Mountain/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCar-v0
16
+ type: MountainCar-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -111.80 +/- 17.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **MountainCar-v0**
25
+ This is a trained model of a **DQN** agent playing **MountainCar-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7b8d265b7880>", "_build": "<function DQNPolicy._build at 0x7b8d265b7910>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7b8d265b79a0>", "forward": "<function DQNPolicy.forward at 0x7b8d265b7a30>", "_predict": "<function DQNPolicy._predict at 0x7b8d265b7ac0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7b8d265b7b50>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7b8d265b7be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b8d265c9bc0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 120000, "_total_timesteps": 120000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708485765879044861, "learning_rate": 0.004, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAID4a7/u3x89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAH/2db9+4RE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_episode_num": 720, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFrAAAAAAACMAWyUS2uMAXSUR0B1RvYVZcLSdX2UKGgGR8BagAAAAAAAaAdLamgIR0B1TMj7hvR7dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B1UveWOZLJdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B1WTrIHTqjdX2UKGgGR8BewAAAAAAAaAdLe2gIR0B1X/MINVindX2UKGgGR8BXgAAAAAAAaAdLXmgIR0B1ZWYPXkHVdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B1a56Tnq3WdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1cN4LThHcdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1dzqD9OyndX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B1fgr1/Ue/dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1h/X9R77bdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0B1jM2P1ct5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B1kraJyhi9dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0B1nNqoIfKZdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0B1poUBXCCSdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B1rSfh/Aj6dX2UKGgGR8BloAAAAAAAaAdLrWgIR0B1tqiCaqjrdX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B1vCfseGO/dX2UKGgGR8BbAAAAAAAAaAdLbGgIR0B1xJ+az/p/dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B1zVuTA31jdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B13SAwwj+rdX2UKGgGR8BgwAAAAAAAaAdLhmgIR0B15A+5e7cxdX2UKGgGR8BooAAAAAAAaAdLxWgIR0B17tAood+5dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B19LUe+23KdX2UKGgGR8BmgAAAAAAAaAdLtGgIR0B1/mq+8Gs4dX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0B2CDvc8DB/dX2UKGgGR8BgYAAAAAAAaAdLg2gIR0B2EBA2Q4jsdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2FlOsT37DdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2HG8yvcJudX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Ik4CIUJwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B2Lb8P4EfUdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B2M+J9AooedX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2OjK3d9DydX2UKGgGR8BaAAAAAAAAaAdLaGgIR0B2QBUwSJ0odX2UKGgGR8BowAAAAAAAaAdLxmgIR0B2SnMTviLmdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0B2UUFwDNhWdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B2V4lpoK2KdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B2Xlwo9cKPdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2Y5/+bVjJdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0B2bZmRNh3JdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2c6s7uDzzdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0B2edXIU8FIdX2UKGgGR8BagAAAAAAAaAdLamgIR0B2gOzLOiWWdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0B2iEJa7mMgdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B2kLmaH9FXdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0B2mXZ9NN8FdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2n+1+iJwbdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B2px8b70nPdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B2rUz0pVjqdX2UKGgGR8BnQAAAAAAAaAdLumgIR0B2t1Dst03gdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B2vkm7aqS6dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0B2xKbUgB91dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0B2yu5mRNh3dX2UKGgGR8BYwAAAAAAAaAdLY2gIR0B20HdUKiPAdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0B21q4H5aePdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0B24HStvGZNdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0B25sm2LHdXdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0B27wKa5PM0dX2UKGgGR8BlgAAAAAAAaAdLrGgIR0B2+LTF2mpEdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0B2/3Mr3CbddX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3BbsRg7YDdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0B3DHhjvuw5dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B3EqI68xsVdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0B3GYA7xNItdX2UKGgGR8BagAAAAAAAaAdLamgIR0B3Ho0VJtiydX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B3J40+C9RKdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0B3L/lA/s3RdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3OZjCpFTedX2UKGgGR8BgoAAAAAAAaAdLhWgIR0B3Q/Zh8YygdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0B3TFEofCAMdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0B3W57AtWdVdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B3YtIczZYgdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3ausXBP9DdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0B3dLx7RfF8dX2UKGgGR8BjIAAAAAAAaAdLmWgIR0B3fdpsXSBtdX2UKGgGR8BogAAAAAAAaAdLxGgIR0B3iQXJo0yhdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3kdA2Q4jsdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0B3mSEdvKlpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B3o7nFHavidX2UKGgGR8BfgAAAAAAAaAdLfmgIR0B3qvIsAeaKdX2UKGgGR8BloAAAAAAAaAdLrWgIR0B3tMM+eOGTdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0B3vXdP+GXYdX2UKGgGR8Bn4AAAAAAAaAdLv2gIR0B3yIGFBY3edX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0B30S4XoC+2dX2UKGgGR8BewAAAAAAAaAdLe2gIR0B32Mj0L+gldX2UKGgGR8BmwAAAAAAAaAdLtmgIR0B34n/FR51OdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B36rwZwXImdX2UKGgGR8BZAAAAAAAAaAdLZGgIR0B37/U2DQJHdX2UKGgGR8BmQAAAAAAAaAdLsmgIR0B3+e0gKWszdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0B4AN2NedCmdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0B4DIeKbaysdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0B4GiSJTER8dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0B4IgFmnO0LdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4KHGS6lLwdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0B4MuanaWX1dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0B4OUfIS13MdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0B4QHIPsiSrdX2UKGgGR8BgQAAAAAAAaAdLgmgIR0B4R8+TvAoHdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0B4TVjd56dEdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0B4UtUedTYNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 59504, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQk9aXLTU0T+puMPTU31/LSYwDaW5jlIoQlV5dRRqtFXWVH+u4dHM2aHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoF4Wi/+QB1YnViLg==", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7b8d265a3d00>", "add": "<function ReplayBuffer.add at 0x7b8d265a3d90>", "sample": "<function ReplayBuffer.sample at 0x7b8d265a3e20>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7b8d265a3eb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b8d30c17e00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 600, "_n_calls": 120000, "max_grad_norm": 10, "exploration_rate": 0.07, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/seuFHrhR7IWUUpRoN0c/yZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (204 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -111.8, "std_reward": 17.713271860387625, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-21T03:31:26.073267"}