--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Results -[INFO] SnowballTarget. -Step: 400000. -Time Elapsed: 903.639 s. -Mean Reward: 25.591. -Std of Reward: 1.992. ## Hyperparameters %%file /content/ml-agents/config/ppo/SnowballTarget.yaml ```yaml behaviors: SnowballTarget: trainer_type: ppo summary_freq: 10000 keep_checkpoints: 10 checkpoint_interval: 50000 max_steps: 400000 time_horizon: 32 threaded: true hyperparameters: learning_rate: 0.0003 learning_rate_schedule: linear batch_size: 128 buffer_size: 2048 beta: 0.005 epsilon: 0.2 lambd: 0.95 num_epoch: 3 network_settings: normalize: false hidden_units: 256 num_layers: 3 vis_encode_type: nature_cnn reward_signals: extrinsic: gamma: 0.9 strength: 1.0 ``` ### Resume the training ```bash mlagents-learn --run-id= --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: enrique2701/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀