import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass from transformers import PretrainedConfig, PreTrainedModel from transformers.utils import ModelOutput from .configuration_mapper import MapperConfig class FeedForward(nn.Module): def __init__(self, d_in, d_out): super().__init__() self.fc1 = nn.Linear(d_in, d_out*2) self.fc2 = nn.Linear(d_out, d_out) def forward(self, x): x = self.fc1(x) x1, x2 = x.chunk(2, dim=-1) x = self.fc2(F.silu(x1) * x2) return x class FeedForwardLayer(nn.Module): def __init__(self, d_in, d_out, dropout=0.1, layer_norm_eps=None): super().__init__() self.ff = FeedForward(d_in, d_out) self.skip = nn.Linear(d_in, d_out) if d_in != d_out else nn.Identity() self.dropout = nn.Dropout(dropout) self.LayerNorm = nn.LayerNorm(d_out, eps=layer_norm_eps) if layer_norm_eps else None def forward(self, x): x = self.dropout(x) x = self.ff(x) + self.skip(x) if self.LayerNorm: x = self.LayerNorm(x) return x class Mapper(nn.Module): def __init__(self, d_in, d_hidden, d_out, n_out, n_layers, dropout=0.1, layer_norm_eps=None): super().__init__() self.n_out = n_out layers = [FeedForwardLayer(d_in, d_hidden, 0.0, layer_norm_eps)] layers += [FeedForwardLayer(d_hidden, d_hidden, dropout, layer_norm_eps) for i in range(n_layers)] self.layers = nn.Sequential(*layers) self.output_layer = FeedForwardLayer(d_hidden, d_out*n_out, 0.0, None) def forward(self, x): x = self.layers(x) x = self.output_layer(x) x = torch.stack(torch.chunk(x, self.n_out, -1), 1) return x @dataclass class MapperModelOutput(ModelOutput): mapper_out: torch.FloatTensor = None class MapperModel(PreTrainedModel): config_class = MapperConfig def __init__(self, config): super().__init__(config) self.mapper = Mapper(config.d_in, config.d_hidden, config.d_out, config.n_out, config.n_layers, config.dropout, config.layer_norm_eps) def forward(self, embedding, return_dict=True): mapper_out = self.mapper(embedding) if not return_dict: return (mapper_out, ) return MapperModelOutput(mapper_out=mapper_out)