Update README.md
Browse files
README.md
CHANGED
@@ -14,8 +14,6 @@ widget:
|
|
14 |
|
15 |
# SW
|
16 |
|
17 |
-
* Pre-trained model on Swahili language using a masked language modeling (MLM) objective.
|
18 |
-
|
19 |
## Model description
|
20 |
|
21 |
This is a transformers model pre-trained on a large corpus of Swahili data in a self-supervised fashion. This means it
|
@@ -42,10 +40,11 @@ The model is based on the Orginal BERT UNCASED which can be found on [google-res
|
|
42 |
You can use the raw model for masked language modeling, but it's primarily intended to be fine-tuned on a downstream task.
|
43 |
|
44 |
### How to use
|
45 |
-
|
46 |
You can use this model directly with a pipeline for masked language modeling:
|
47 |
|
48 |
|
|
|
|
|
49 |
```python
|
50 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
51 |
|
@@ -55,8 +54,26 @@ model = AutoModelForMaskedLM.from_pretrained("eolang/SW-v1")
|
|
55 |
text = "Hii ni tovuti ya idhaa ya Kiswahili ya BBC ambayo hukuletea habari na makala kutoka Afrika na kote duniani kwa lugha ya Kiswahili."
|
56 |
encoded_input = tokenizer(text, return_tensors='pt')
|
57 |
output = model(**encoded_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
```
|
|
|
59 |
### Limitations and Bias
|
60 |
|
61 |
-
Even if the training data used for this model could be reasonably neutral, this model can have biased
|
62 |
-
|
|
|
14 |
|
15 |
# SW
|
16 |
|
|
|
|
|
17 |
## Model description
|
18 |
|
19 |
This is a transformers model pre-trained on a large corpus of Swahili data in a self-supervised fashion. This means it
|
|
|
40 |
You can use the raw model for masked language modeling, but it's primarily intended to be fine-tuned on a downstream task.
|
41 |
|
42 |
### How to use
|
|
|
43 |
You can use this model directly with a pipeline for masked language modeling:
|
44 |
|
45 |
|
46 |
+
#### Tokenizer
|
47 |
+
|
48 |
```python
|
49 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
50 |
|
|
|
54 |
text = "Hii ni tovuti ya idhaa ya Kiswahili ya BBC ambayo hukuletea habari na makala kutoka Afrika na kote duniani kwa lugha ya Kiswahili."
|
55 |
encoded_input = tokenizer(text, return_tensors='pt')
|
56 |
output = model(**encoded_input)
|
57 |
+
print(output)
|
58 |
+
```
|
59 |
+
|
60 |
+
#### Fill Mask Model
|
61 |
+
|
62 |
+
```python
|
63 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
64 |
+
from transformers import pipeline
|
65 |
+
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("eolang/SW-v1")
|
67 |
+
model = AutoModelForMaskedLM.from_pretrained("eolang/SW-v1")
|
68 |
+
|
69 |
+
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
70 |
+
sample_text = "Tumefanya mabadiliko muhimu [MASK] sera zetu za faragha na vidakuzi"
|
71 |
+
|
72 |
+
for prediction in fill_mask(sample_text):
|
73 |
+
print(f"{prediction['sequence']}, confidence: {prediction['score']}")
|
74 |
```
|
75 |
+
|
76 |
### Limitations and Bias
|
77 |
|
78 |
+
Even if the training data used for this model could be reasonably neutral, this model can have biased predictions.
|
79 |
+
This is something I'm still working on improving. Feel free to share suggestions/comments via Discussion or [Email Me 😀](mailto:[email protected]?subject=HF%20Model%20Suggestions)
|