File size: 13,793 Bytes
582a1b5 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dc54f1ff910>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dc54f1ff9a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dc54f1ffa30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dc54f1ffac0>", "_build": "<function ActorCriticPolicy._build at 0x7dc54f1ffb50>", "forward": "<function ActorCriticPolicy.forward at 0x7dc54f1ffbe0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dc54f1ffc70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dc54f1ffd00>", "_predict": "<function ActorCriticPolicy._predict at 0x7dc54f1ffd90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dc54f1ffe20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dc54f1ffeb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dc54f1fff40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dc54f39bb00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712081892531325808, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOQDT0rPr8/zCUyPsb4t70myZE7jIMMvQAAAAAAAAAAgApAPcMdWrqEg4o7EXpKOPOTHztwdVy4AACAPwAAgD/m6709xW+cPEtD3DxX3T6+FImmPfsLej0AAAAAAAAAAJpNOz1cxTq8aH+LvPJxazxtZra9ZuVDPQAAgD8AAIA/ZhqxvFyLProbU/65ayjKtRb7jbqXtxQ5AACAPwAAgD/NTGm6FKCdusrUqjtEt4E27xS4ObaCcjUAAIA/AACAP+ad4j16+P8+sREGPGENTL6zLts8SijSPAAAAAAAAAAAmjKcPBQKgrqQv9A7YHMzNhtaBLtopjE1AACAPwAAgD/NBiM+xY/WPpXryL36Zk++PTj6O13XMb0AAAAAAAAAADOX1jx75pu6AOwnOrOBZjYOIYE6TZVbNQAAgD8AAIA/8+fOPa67zbraXaO81D+ZPO5M6DsUmIS9AAAAAAAAgD8zsd+9xILhPrRBPz75DV++Y61RPRrJlLsAAAAAAAAAAICwGL1I15S6dykbOVx1JDQaflY6PUwzuAAAgD8AAIA/muVyvAZVHz+bFZw8onRvvgkFXryD8I+9AAAAAAAAAACAn3y9SDmQukyGAD3XBqM1YAzouthGkzQAAIA/AAAAABNHEz4+XIQ+Z5A0vvN6Jr4RaxO9PqYzvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLR45cTrVyMAWyUTegDjAF0lEdAq6NqiZfD13V9lChoBkdAb0Y4TbnHN2gHTbgDaAhHQKukPqqwQlN1fZQoaAZHQGK5Lsa86FNoB03oA2gIR0CrrioK2KEWdX2UKGgGR0BlefKMefZmaAdN6ANoCEdAq7HzwazeGnV9lChoBkdAYvsrq+rU9mgHTegDaAhHQKu3gHfuTid1fZQoaAZHQGLF7Dl5nlJoB03oA2gIR0CruSQMhHLBdX2UKGgGR0BflwhOgxrSaAdN6ANoCEdAq7vzy1/lQ3V9lChoBkdAZNhlLeyiVWgHTegDaAhHQKu+rguRLbp1fZQoaAZHQGJbUEX+ERJoB03oA2gIR0CrvvXfIjnndX2UKGgGR0Bkcsw5/9YPaAdN6ANoCEdAq8BWBg/kenV9lChoBkdAZSCX+ERJ3GgHTegDaAhHQKvIblsguAZ1fZQoaAZHQGWwMEq2BrhoB03oA2gIR0Cryyt1hb4bdX2UKGgGR0BhqnxOLzf8aAdN6ANoCEdAq8vnKB/ZunV9lChoBkdAY+9vfCQ9zWgHTegDaAhHQKvM/7fHggp1fZQoaAZHQGH+9c8kleFoB03oA2gIR0CrzjhtDUmVdX2UKGgGR0Beq7KzRhMKaAdN6ANoCEdAq88rcsUZenV9lChoBkdAZfph+fAbhmgHTegDaAhHQKvPM0kWykd1fZQoaAZHQGMi+nIhhYxoB03oA2gIR0Cr0AImPYFrdX2UKGgGR0BZIZ+pfhMraAdN6ANoCEdAq9BEO3DvVnV9lChoBkdAbwTRLsa86GgHTbYCaAhHQKvc2JVsDW91fZQoaAZHQGTAlHz6JqJoB03oA2gIR0Cr3WbH6uW9dX2UKGgGR0Blbfp4bCJoaAdN6ANoCEdAq+JLh73PA3V9lChoBkdAYaK8scyWRmgHTegDaAhHQKvjt8baRIV1fZQoaAZHQGPRnQhOgxtoB03oA2gIR0Cr6LV5a/yodX2UKGgGR0BkCepn6EamaAdN6ANoCEdAq+j6KHfuTnV9lChoBkdAYSFLDhtLtmgHTegDaAhHQKvqRHPNVzZ1fZQoaAZHQGILm2sq8UVoB03oA2gIR0Cr8X9+PRzBdX2UKGgGR0BiBTT6SDAaaAdN6ANoCEdAq/RfAfuCw3V9lChoBkdAZj23ocJdB2gHTegDaAhHQKv1AJVKf4B1fZQoaAZHQGKVebmU4aRoB03oA2gIR0Cr9fMRYigTdX2UKGgGR0Bls0H8jzI4aAdN6ANoCEdAq/cIO2AoX3V9lChoBkdAYov5qM3qA2gHTegDaAhHQKv372LYPG11fZQoaAZHQGX9nJcPe55oB03oA2gIR0Cr9/aCUX54dX2UKGgGR0Bkgvek56t1aAdN6ANoCEdAq/jEDbJwKnV9lChoBkdAZVVqrR0EHWgHTegDaAhHQKv5CEpy6tl1fZQoaAZHQGGsOWa+evpoB03oA2gIR0CsBc7JwKjSdX2UKGgGR0BhWYnBtUGWaAdN6ANoCEdArAZh6IFeOXV9lChoBkdAZdmMbWEsa2gHTegDaAhHQKwMiB5ooNN1fZQoaAZHQGMAUo8ZDRdoB03oA2gIR0CsDg/BWPtEdX2UKGgGR0BmYOQr+YMOaAdN6ANoCEdArBNexB3RonV9lChoBkdAY6uPp6hQFmgHTegDaAhHQKwTp3gUDdR1fZQoaAZHQF/Ymmce8wpoB03oA2gIR0CsFPiq6vq1dX2UKGgGR0Bi7mUr08NhaAdN6ANoCEdArBwAmXw9aHV9lChoBkdAW28VclgMMWgHTegDaAhHQKwek11nuiN1fZQoaAZHQGKNlDfFaStoB03oA2gIR0CsH4T0QK8ddX2UKGgGR0Bdy9aIN3GGaAdN6ANoCEdArCDYh8pkPXV9lChoBkdAXP86hg3Lm2gHTegDaAhHQKwiZ8uSOip1fZQoaAZHQGKQTAN5MURoB03oA2gIR0CsI1IUJv5ydX2UKGgGR0Bij7lNlAeJaAdN6ANoCEdArCNZGhEjPnV9lChoBkdAWhUNb1RLsmgHTegDaAhHQKwkHe54GEB1fZQoaAZHQF2EjbBXS0BoB03oA2gIR0CsJF3hfjS5dX2UKGgGR0BhFYjUutfYaAdN6ANoCEdArDAQC0WuYHV9lChoBkdAYYj1nuiN82gHTegDaAhHQKwwn7Q9ic51fZQoaAZHQGJAt6gM+eRoB03oA2gIR0CsNa7Sy+pPdX2UKGgGR0BhYm0Xxe9jaAdN6ANoCEdArDel8CxNZnV9lChoBkdAYrz2oNutOmgHTegDaAhHQKw9dXUYsNF1fZQoaAZHQGL/JHZsbedoB03oA2gIR0CsPcj0lJHzdX2UKGgGR0BiZI8dPtUoaAdN6ANoCEdArD8ZJsfq5nV9lChoBkdAX5YeOn2qUGgHTegDaAhHQKxGLeUILPV1fZQoaAZHQGCtZNO/L1VoB03oA2gIR0CsSNhKL877dX2UKGgGR0BjF25hBqsVaAdN6ANoCEdArEmAOWjXWnV9lChoBkdAYoXV9Wp6yGgHTegDaAhHQKxKd0NjLB91fZQoaAZHQGAvcYht+CtoB03oA2gIR0CsS5B1Tzd2dX2UKGgGR0BgN+WpqASWaAdN6ANoCEdArEx5S75EdHV9lChoBkdAYH+j1wo9cWgHTegDaAhHQKxMgK8+Ro11fZQoaAZHQGa0C04R28toB03oA2gIR0CsTUk/B3zMdX2UKGgGR0BebypzcRDkaAdN6ANoCEdArE2KJQ+EAnV9lChoBkdAYFo4wRGtp2gHTegDaAhHQKxaZmTTvy91fZQoaAZHQGG1RFy7wrloB03oA2gIR0CsWwCCz1K5dX2UKGgGR0Bl/1o8IRh+aAdN6ANoCEdArGARFkQPJHV9lChoBkdAYShiUgSvkmgHTegDaAhHQKxhjcVxjrl1fZQoaAZHQGQyvDxb0OFoB03oA2gIR0CsZxq8lHBldX2UKGgGR0Bh+gDaGpMpaAdN6ANoCEdArGd43PzFuXV9lChoBkdAYZtK+SKWLWgHTegDaAhHQKxpOGZeAut1fZQoaAZHQGEQoAGSpzdoB03oA2gIR0CscGKHoHLSdX2UKGgGR0BgCObwz+FUaAdN6ANoCEdArHMR9G7SRnV9lChoBkdAYblc2zfJm2gHTegDaAhHQKxzxsxfv4N1fZQoaAZHQGGMRtxdY4hoB03oA2gIR0CsdNXpfQa8dX2UKGgGR0BgDQ5BC2MLaAdN6ANoCEdArHYGLzf78HV9lChoBkdAZFrtUn5SFWgHTegDaAhHQKx26Wkadc11fZQoaAZHQGENQT/Q0GhoB03oA2gIR0CsdvAq3EyddX2UKGgGR0BnQzOeJ53UaAdN6ANoCEdArHe8GxD9fnV9lChoBkdAZajKA8Swn2gHTegDaAhHQKx3+3irDIl1fZQoaAZHQGOsSYoiLVFoB03oA2gIR0CshLdv0h/zdX2UKGgGR0BhjXEOy3TeaAdN6ANoCEdArIVI5Lh73XV9lChoBkdAZV4C+10DEGgHTegDaAhHQKyKARxtHhF1fZQoaAZHQF5V6Vt4zJpoB03oA2gIR0Csi19JJ5E/dX2UKGgGR0BhPkg0TDfnaAdN6ANoCEdArI/471ZkkXV9lChoBkdAXe862fChvmgHTegDaAhHQKyQM9B8hLZ1fZQoaAZHQGfJaYeDFqBoB03oA2gIR0CskTuW8h9tdX2UKGgGR0BhzkyBTXJ6aAdN6ANoCEdArJeIsmOU+3V9lChoBkdAYYJr433pOmgHTegDaAhHQKyZvDjR2KV1fZQoaAZHQGezShrWRRxoB03oA2gIR0CsmkZNXYDldX2UKGgGR0BkN/Y+Sr5qaAdN6ANoCEdArJsR68g6l3V9lChoBkdAXuUyFfzBh2gHTegDaAhHQKyb+joIOYp1fZQoaAZHQF2BilzltCRoB03oA2gIR0CsnLKwIMScdX2UKGgGR0BmOyYPXkHVaAdN6ANoCEdArJy48p1A7nV9lChoBkdAYyznIyTINmgHTegDaAhHQKydX1uBMBZ1fZQoaAZHQGIV5cTrVvxoB03oA2gIR0CsnZT3RG+cdX2UKGgGR0BgLYc5sCT2aAdN6ANoCEdArKAtyimEXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |