File size: 1,928 Bytes
cb997de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datetime import datetime

# Load model and tokenizer once when the script is initialized
MODEL_PATH = "."  # Adjust this to match the path in your HF repo
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model.eval()

# Mapping for label interpretation
label_mapping = {0: "Negative", 1: "Positive"}

def predict(inputs):
    """
    Function to handle prediction.
    :param inputs: Dictionary with the text to be analyzed, e.g., {'text': 'I love this movie'}
    :return: Dictionary with label and confidence score
    """
    try:
        # Extract input text from the dictionary
        input_text = inputs.get("text")
        if not input_text:
            return {"error": "Invalid input, 'text' key is required"}, 400

        # Tokenize the input text
        tokenized_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)

        # Perform prediction with the model
        with torch.no_grad():
            outputs = model(**tokenized_input)
            probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
            confidence, label_idx = torch.max(probabilities, dim=1)
            confidence = confidence.item() * 100  # Convert to percentage
            label = label_mapping[label_idx.item()]

        # Structure the response as a dictionary
        response = {
            "data": {
                "confidence": f"{confidence:.2f}%",
                "input_text": input_text,
                "label": label
            },
            "model_version": "1.0.0",
            "status": "success",
            "timestamp": datetime.now().isoformat()
        }

        return response

    except Exception as e:
        # Handle errors gracefully
        return {"error": str(e)}, 500