File size: 1,928 Bytes
cb997de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datetime import datetime
# Load model and tokenizer once when the script is initialized
MODEL_PATH = "." # Adjust this to match the path in your HF repo
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model.eval()
# Mapping for label interpretation
label_mapping = {0: "Negative", 1: "Positive"}
def predict(inputs):
"""
Function to handle prediction.
:param inputs: Dictionary with the text to be analyzed, e.g., {'text': 'I love this movie'}
:return: Dictionary with label and confidence score
"""
try:
# Extract input text from the dictionary
input_text = inputs.get("text")
if not input_text:
return {"error": "Invalid input, 'text' key is required"}, 400
# Tokenize the input text
tokenized_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
# Perform prediction with the model
with torch.no_grad():
outputs = model(**tokenized_input)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
confidence, label_idx = torch.max(probabilities, dim=1)
confidence = confidence.item() * 100 # Convert to percentage
label = label_mapping[label_idx.item()]
# Structure the response as a dictionary
response = {
"data": {
"confidence": f"{confidence:.2f}%",
"input_text": input_text,
"label": label
},
"model_version": "1.0.0",
"status": "success",
"timestamp": datetime.now().isoformat()
}
return response
except Exception as e:
# Handle errors gracefully
return {"error": str(e)}, 500
|