Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1960.91 +/- 50.47
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efea6340b156b211a7689609b75dcfbe516bc89e5561ad7bf90efc0482b435ce
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6fbd4a5ea0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6fbd4a5f30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6fbd4a5fc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6fbd4a6050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6fbd4a60e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6fbd4a6170>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6fbd4a6200>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6fbd4a6290>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6fbd4a6320>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6fbd4a63b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6fbd4a6440>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6fbd4a64d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6fbd4b0e40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1685241185482252372,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFxy9D4yUOC+AydqPooL/T/ZuTDAN8KtvvFV6r3ONVm/Cm0bvxCYJ0AOo6w/TFDXP59u4b5vPd2//AwNPyxARb+6ylg/cm1kvzVywb6fwsW/M8hqvwgkjr+gqco/81WuPkqK0r8oN5Y+n+gTP+GsWr/SzAo+HDQtv9sJHb3PTPA/E2D8v8owYL3dLpQ+nF8nv652y79i3mI/Xyp0vQkS6z/q3zK+yzz9vkzYnz67RSZAqYuLP9WIY78Nhw0/SvA+wFh7Kr9p8TO/xRRMPx6/uD9KitK/KDeWPseK3b8F2ZU/9dWPP4XaR7+gWDi+qYrvP33GJ8C9GgtATRtIv9YLn78RICc/uoPiP7jRoj9yPcW+/S+Cv5TxRL+9QyY/lEYsPSNJoL7UCce/YmAjv8DoEj53/4S/D0YFP3l80T9lCvq+Q6MbPyg3lj6f6BM/4axav2iLcz/i3Gy/N23Rvt2Xmz8WmgfAlHuyv2Lcu778WR2/6i6mP8vfoT63iLw+UD4JvlRwqr/l1wpAUBZNvMoxBsDN6dS/8uSOPy6qwzwSfsG/SYfjvvTnFkBCCuy+Psewv0OjGz8oN5Y+n+gTP+GsWr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC9kOE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABYH1vQAAAAATBP6/AAAAAIjE9r0AAAAAANz3PwAAAADYiY49AAAAANM/6z8AAAAAJZHAOwAAAAABIeC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/+xKNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKcHBL4AAAAAR0vvvwAAAABl8o48AAAAADwP+D8AAAAAWZeKPQAAAADvDeA/AAAAAFy+rj0AAAAA46fsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKWQWrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBROJg9AAAAAGef+b8AAAAAQgmgPQAAAADm8fo/AAAAAG5h6L0AAAAA3K4AQAAAAABNjuQ8AAAAAArV2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN2Xc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI6qnvQAAAACRhOS/AAAAADAjyTwAAAAAtMnhPwAAAABJ01G9AAAAAIdH9D8AAAAABOPYvQAAAABz/uC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwc8Y0l7dCMAWyUTegDjAF0lEdAq602+yquKXV9lChoBkdAnyP02LpA2WgHTegDaAhHQKuyACEHt4R1fZQoaAZHQJ8DtuxbB45oB03oA2gIR0CrsiZgG8mKdX2UKGgGR0CdvgI2fkFOaAdN6ANoCEdAq7aFD+irUHV9lChoBkdAnYCN2xIJ7mgHTegDaAhHQKu8xIQvpQl1fZQoaAZHQJfJVD1GsmxoB03oA2gIR0CrwhZ9Vmz0dX2UKGgGR0CYOIYdQwbmaAdN6ANoCEdAq8I81IiC8XV9lChoBkdAm7v/HxSYPWgHTegDaAhHQKvFozl90A91fZQoaAZHQJsOtwzch1VoB03oA2gIR0CrycN0vGp/dX2UKGgGR0CcnKrilzltaAdN6ANoCEdAq858o+fRNXV9lChoBkdAlli/FaSs82gHTegDaAhHQKvOp3t8eCF1fZQoaAZHQJdUCzZ6D5FoB03oA2gIR0Cr0hYnOSntdX2UKGgGR0CdIOZ5AyEdaAdN6ANoCEdAq9f8S9M9KXV9lChoBkdAm/WCPMjeK2gHTegDaAhHQKveoHIIWxh1fZQoaAZHQJ1H6E9Mbm5oB03oA2gIR0Cr3sn/cWTHdX2UKGgGR0CfNtUqQRwqaAdN6ANoCEdAq+JVsUIsy3V9lChoBkdAnE3+ruIAO2gHTegDaAhHQKvma6tDD0l1fZQoaAZHQJ3AsVLzwttoB03oA2gIR0Cr6ylxffGddX2UKGgGR0CcYDN7BwdbaAdN6ANoCEdAq+tQ55qubXV9lChoBkdAm3pbjghr32gHTegDaAhHQKvutS2phnd1fZQoaAZHQJpaFKcurZJoB03oA2gIR0Cr824VARkFdX2UKGgGR0CZcbs5GSZCaAdN6ANoCEdAq/qwrOJLunV9lChoBkdAmxZiUHIIW2gHTegDaAhHQKv66/KQq7R1fZQoaAZHQJz6J06o2n9oB03oA2gIR0Cr/tm/336AdX2UKGgGR0CbV8GkvboKaAdN6ANoCEdArALo3BHkLnV9lChoBkdAnJ2Lonrpq2gHTegDaAhHQKwHloGIKtx1fZQoaAZHQJh1/srupjtoB03oA2gIR0CsB71donKGdX2UKGgGR0CcD6VoHs1LaAdN6ANoCEdArAsvthNM5HV9lChoBkdAmrA8eOn2qWgHTegDaAhHQKwPPZuAI6d1fZQoaAZHQJ2NMEgW8AdoB03oA2gIR0CsFZFpwjt5dX2UKGgGR0CcLpbPyCnQaAdN6ANoCEdArBXNr/Khc3V9lChoBkdAndHPVd5Y5mgHTegDaAhHQKwbN4N7SiN1fZQoaAZHQJ1RTWuoxYdoB03oA2gIR0CsH2xQSBbwdX2UKGgGR0CYoUzBhx5taAdN6ANoCEdArCQWTFERa3V9lChoBkdAm6YwQtjCpGgHTegDaAhHQKwkO9K28Zl1fZQoaAZHQJ41TL1VYIVoB03oA2gIR0CsJ6jXFtKqdX2UKGgGR0CdU+fpljEvaAdN6ANoCEdArCvG2d/ax3V9lChoBkdAnOke3H7xeGgHTegDaAhHQKww173wkPd1fZQoaAZHQJ0Bt3NcGC9oB03oA2gIR0CsMRGff4yodX2UKGgGR0Cf1EvhZQpGaAdN6ANoCEdArDYTM1TBInV9lChoBkdAnvHMZ9/jKmgHTegDaAhHQKw7/DUExIt1fZQoaAZHQJx9W0AtFrloB03oA2gIR0CsQLKz7di2dX2UKGgGR0Ca7RkXDWK/aAdN6ANoCEdArEDZcE/0NHV9lChoBkdAmfI1/x2B8WgHTegDaAhHQKxETGNJe3R1fZQoaAZHQJa7ZBv73wloB03oA2gIR0CsSF/ShJyydX2UKGgGR0CSZy5PM0P6aAdN6ANoCEdArE0dVaOghHV9lChoBkdAlH1wG8mKImgHTegDaAhHQKxNRuBMBZJ1fZQoaAZHQIxaX0oScsloB03oA2gIR0CsUYKa5PM0dX2UKGgGR0CIVWQLeANHaAdN6ANoCEdArFfpKcurZXV9lChoBkdAkLmtnoPkJmgHTegDaAhHQKxdeUY8+zN1fZQoaAZHQI0teh24d6toB03oA2gIR0CsXZ6Y/mkndX2UKGgGR0CKKrc0Ltu2aAdN6ANoCEdArGEWHk92YHV9lChoBkdAgsFK1w5vL2gHTegDaAhHQKxlPnjhky11fZQoaAZHQJLC8+7lJYloB03oA2gIR0CsagCxmkFfdX2UKGgGR0CQ3t+m3vx6aAdN6ANoCEdArGopYs/Y8XV9lChoBkdAkp7uiFj/dmgHTegDaAhHQKxtqvLX+VF1fZQoaAZHQJOS3ssxwhpoB03oA2gIR0Csc69z4k/sdX2UKGgGR0CXA9ntv4ucaAdN6ANoCEdArHqpEfDDTHV9lChoBkdAl5mgIUrTY2gHTegDaAhHQKx6z78ejmF1fZQoaAZHQJmRSlenhsJoB03oA2gIR0CsflqmCROldX2UKGgGR0CZZeH2h7E6aAdN6ANoCEdArIKOh4+r2nV9lChoBkdAkGYIREnb7GgHTegDaAhHQKyHdg9eQdV1fZQoaAZHQI8J/5HmRvFoB03oA2gIR0Csh6E8RtgsdX2UKGgGR0CEq/ITXarWaAdN6ANoCEdArIs6dxyXD3V9lChoBkdAXotE0BOpKmgHTegDaAhHQKyQZ1LamGd1fZQoaAZHQHw7eZkTYd1oB03oA2gIR0Csl+lajesQdX2UKGgGR0CD0zRDTjNqaAdN6ANoCEdArJgmknCwbHV9lChoBkdAiizet0V8C2gHTegDaAhHQKyb4miQDFJ1fZQoaAZHQJJHWBXjlxRoB03oA2gIR0CsoDIQWepXdX2UKGgGR0CV97P91loUaAdN6ANoCEdArKUTcdo373V9lChoBkdAmQBS7sfJWGgHTegDaAhHQKylOuq3mV91fZQoaAZHQJjYGKpDNQloB03oA2gIR0CsqLVXeWOZdX2UKGgGR0CdbNW4EwFlaAdN6ANoCEdArK0lYlpoK3V9lChoBkdAm60rmZE2HmgHTegDaAhHQKy0NlEqlP91fZQoaAZHQJnQRU4rBj5oB03oA2gIR0CstHMhX8wYdX2UKGgGR0CUqIdZq20BaAdN6ANoCEdArLl+WQfZEnV9lChoBkdAmsPA2606YGgHTegDaAhHQKy9tyLhrFh1fZQoaAZHQJ2HLnlnyupoB03oA2gIR0CswpVVghKUdX2UKGgGR0Cav5yzXz19aAdN6ANoCEdArMLA1He7+XV9lChoBkdAlSS5Nj9XLmgHTegDaAhHQKzGVSApazN1fZQoaAZHQJkpmX6ZYxNoB03oA2gIR0Csypg62fCidX2UKGgGR0CbD8U1yeZoaAdN6ANoCEdArNDYwudwvXV9lChoBkdAnPII0uUUwmgHTegDaAhHQKzRFnOB19x1fZQoaAZHQJqLGdPLxI9oB03oA2gIR0Cs1oashgVodX2UKGgGR0CX/4/dqL0jaAdN6ANoCEdArNtoBV+7UXV9lChoBkdAlP7DpTuOTGgHTegDaAhHQKzglizcAR11fZQoaAZHQJJ/l6QeV9poB03oA2gIR0Cs4L2qcVgydX2UKGgGR0CTOxnc+JP7aAdN6ANoCEdArORp5JK8MHV9lChoBkdAlmSpMHryD2gHTegDaAhHQKzoqJAMUh51fZQoaAZHQJnZKNVBD5VoB03oA2gIR0Cs7mnXNC7cdX2UKGgGR0CZOR/SH/LlaAdN6ANoCEdArO6itLcsUnV9lChoBkdAmT38XFcY7GgHTegDaAhHQKz0GRJ2+wl1fZQoaAZHQJ6JjZqVQhxoB03oA2gIR0Cs+Wmecx0udX2UKGgGR0Ccwjg5R0lraAdN6ANoCEdArP4zZ13dK3V9lChoBkdAnndke2d/a2gHTegDaAhHQKz+Xj0cwQF1fZQoaAZHQJ0qPCrLhaVoB03oA2gIR0CtAdzYEnstdX2UKGgGR0CcT0GsFMZhaAdN6ANoCEdArQYiDwpe/3V9lChoBkdAk0nWCdz4lGgHTegDaAhHQK0LD14gRsd1fZQoaAZHQJ7Cys0YTCdoB03oA2gIR0CtCzvwd8zAdX2UKGgGR0CcUsHCXQdCaAdN6ANoCEdArRBZAQg9vHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a19d62cdc8f687709bfa9ff667a259fb887391627694a9bee6d781a11d6e4bdc
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca7399d6eb195c5962e0577a69b43d5b8fb64f97260cca23391210a13c952fd5
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6fbd4a5ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6fbd4a5f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6fbd4a5fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6fbd4a6050>", "_build": "<function ActorCriticPolicy._build at 0x7f6fbd4a60e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6fbd4a6170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6fbd4a6200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6fbd4a6290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6fbd4a6320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6fbd4a63b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6fbd4a6440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6fbd4a64d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6fbd4b0e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685241185482252372, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFxy9D4yUOC+AydqPooL/T/ZuTDAN8KtvvFV6r3ONVm/Cm0bvxCYJ0AOo6w/TFDXP59u4b5vPd2//AwNPyxARb+6ylg/cm1kvzVywb6fwsW/M8hqvwgkjr+gqco/81WuPkqK0r8oN5Y+n+gTP+GsWr/SzAo+HDQtv9sJHb3PTPA/E2D8v8owYL3dLpQ+nF8nv652y79i3mI/Xyp0vQkS6z/q3zK+yzz9vkzYnz67RSZAqYuLP9WIY78Nhw0/SvA+wFh7Kr9p8TO/xRRMPx6/uD9KitK/KDeWPseK3b8F2ZU/9dWPP4XaR7+gWDi+qYrvP33GJ8C9GgtATRtIv9YLn78RICc/uoPiP7jRoj9yPcW+/S+Cv5TxRL+9QyY/lEYsPSNJoL7UCce/YmAjv8DoEj53/4S/D0YFP3l80T9lCvq+Q6MbPyg3lj6f6BM/4axav2iLcz/i3Gy/N23Rvt2Xmz8WmgfAlHuyv2Lcu778WR2/6i6mP8vfoT63iLw+UD4JvlRwqr/l1wpAUBZNvMoxBsDN6dS/8uSOPy6qwzwSfsG/SYfjvvTnFkBCCuy+Psewv0OjGz8oN5Y+n+gTP+GsWr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC9kOE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABYH1vQAAAAATBP6/AAAAAIjE9r0AAAAAANz3PwAAAADYiY49AAAAANM/6z8AAAAAJZHAOwAAAAABIeC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/+xKNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKcHBL4AAAAAR0vvvwAAAABl8o48AAAAADwP+D8AAAAAWZeKPQAAAADvDeA/AAAAAFy+rj0AAAAA46fsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKWQWrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBROJg9AAAAAGef+b8AAAAAQgmgPQAAAADm8fo/AAAAAG5h6L0AAAAA3K4AQAAAAABNjuQ8AAAAAArV2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN2Xc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI6qnvQAAAACRhOS/AAAAADAjyTwAAAAAtMnhPwAAAABJ01G9AAAAAIdH9D8AAAAABOPYvQAAAABz/uC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwc8Y0l7dCMAWyUTegDjAF0lEdAq602+yquKXV9lChoBkdAnyP02LpA2WgHTegDaAhHQKuyACEHt4R1fZQoaAZHQJ8DtuxbB45oB03oA2gIR0CrsiZgG8mKdX2UKGgGR0CdvgI2fkFOaAdN6ANoCEdAq7aFD+irUHV9lChoBkdAnYCN2xIJ7mgHTegDaAhHQKu8xIQvpQl1fZQoaAZHQJfJVD1GsmxoB03oA2gIR0CrwhZ9Vmz0dX2UKGgGR0CYOIYdQwbmaAdN6ANoCEdAq8I81IiC8XV9lChoBkdAm7v/HxSYPWgHTegDaAhHQKvFozl90A91fZQoaAZHQJsOtwzch1VoB03oA2gIR0CrycN0vGp/dX2UKGgGR0CcnKrilzltaAdN6ANoCEdAq858o+fRNXV9lChoBkdAlli/FaSs82gHTegDaAhHQKvOp3t8eCF1fZQoaAZHQJdUCzZ6D5FoB03oA2gIR0Cr0hYnOSntdX2UKGgGR0CdIOZ5AyEdaAdN6ANoCEdAq9f8S9M9KXV9lChoBkdAm/WCPMjeK2gHTegDaAhHQKveoHIIWxh1fZQoaAZHQJ1H6E9Mbm5oB03oA2gIR0Cr3sn/cWTHdX2UKGgGR0CfNtUqQRwqaAdN6ANoCEdAq+JVsUIsy3V9lChoBkdAnE3+ruIAO2gHTegDaAhHQKvma6tDD0l1fZQoaAZHQJ3AsVLzwttoB03oA2gIR0Cr6ylxffGddX2UKGgGR0CcYDN7BwdbaAdN6ANoCEdAq+tQ55qubXV9lChoBkdAm3pbjghr32gHTegDaAhHQKvutS2phnd1fZQoaAZHQJpaFKcurZJoB03oA2gIR0Cr824VARkFdX2UKGgGR0CZcbs5GSZCaAdN6ANoCEdAq/qwrOJLunV9lChoBkdAmxZiUHIIW2gHTegDaAhHQKv66/KQq7R1fZQoaAZHQJz6J06o2n9oB03oA2gIR0Cr/tm/336AdX2UKGgGR0CbV8GkvboKaAdN6ANoCEdArALo3BHkLnV9lChoBkdAnJ2Lonrpq2gHTegDaAhHQKwHloGIKtx1fZQoaAZHQJh1/srupjtoB03oA2gIR0CsB71donKGdX2UKGgGR0CcD6VoHs1LaAdN6ANoCEdArAsvthNM5HV9lChoBkdAmrA8eOn2qWgHTegDaAhHQKwPPZuAI6d1fZQoaAZHQJ2NMEgW8AdoB03oA2gIR0CsFZFpwjt5dX2UKGgGR0CcLpbPyCnQaAdN6ANoCEdArBXNr/Khc3V9lChoBkdAndHPVd5Y5mgHTegDaAhHQKwbN4N7SiN1fZQoaAZHQJ1RTWuoxYdoB03oA2gIR0CsH2xQSBbwdX2UKGgGR0CYoUzBhx5taAdN6ANoCEdArCQWTFERa3V9lChoBkdAm6YwQtjCpGgHTegDaAhHQKwkO9K28Zl1fZQoaAZHQJ41TL1VYIVoB03oA2gIR0CsJ6jXFtKqdX2UKGgGR0CdU+fpljEvaAdN6ANoCEdArCvG2d/ax3V9lChoBkdAnOke3H7xeGgHTegDaAhHQKww173wkPd1fZQoaAZHQJ0Bt3NcGC9oB03oA2gIR0CsMRGff4yodX2UKGgGR0Cf1EvhZQpGaAdN6ANoCEdArDYTM1TBInV9lChoBkdAnvHMZ9/jKmgHTegDaAhHQKw7/DUExIt1fZQoaAZHQJx9W0AtFrloB03oA2gIR0CsQLKz7di2dX2UKGgGR0Ca7RkXDWK/aAdN6ANoCEdArEDZcE/0NHV9lChoBkdAmfI1/x2B8WgHTegDaAhHQKxETGNJe3R1fZQoaAZHQJa7ZBv73wloB03oA2gIR0CsSF/ShJyydX2UKGgGR0CSZy5PM0P6aAdN6ANoCEdArE0dVaOghHV9lChoBkdAlH1wG8mKImgHTegDaAhHQKxNRuBMBZJ1fZQoaAZHQIxaX0oScsloB03oA2gIR0CsUYKa5PM0dX2UKGgGR0CIVWQLeANHaAdN6ANoCEdArFfpKcurZXV9lChoBkdAkLmtnoPkJmgHTegDaAhHQKxdeUY8+zN1fZQoaAZHQI0teh24d6toB03oA2gIR0CsXZ6Y/mkndX2UKGgGR0CKKrc0Ltu2aAdN6ANoCEdArGEWHk92YHV9lChoBkdAgsFK1w5vL2gHTegDaAhHQKxlPnjhky11fZQoaAZHQJLC8+7lJYloB03oA2gIR0CsagCxmkFfdX2UKGgGR0CQ3t+m3vx6aAdN6ANoCEdArGopYs/Y8XV9lChoBkdAkp7uiFj/dmgHTegDaAhHQKxtqvLX+VF1fZQoaAZHQJOS3ssxwhpoB03oA2gIR0Csc69z4k/sdX2UKGgGR0CXA9ntv4ucaAdN6ANoCEdArHqpEfDDTHV9lChoBkdAl5mgIUrTY2gHTegDaAhHQKx6z78ejmF1fZQoaAZHQJmRSlenhsJoB03oA2gIR0CsflqmCROldX2UKGgGR0CZZeH2h7E6aAdN6ANoCEdArIKOh4+r2nV9lChoBkdAkGYIREnb7GgHTegDaAhHQKyHdg9eQdV1fZQoaAZHQI8J/5HmRvFoB03oA2gIR0Csh6E8RtgsdX2UKGgGR0CEq/ITXarWaAdN6ANoCEdArIs6dxyXD3V9lChoBkdAXotE0BOpKmgHTegDaAhHQKyQZ1LamGd1fZQoaAZHQHw7eZkTYd1oB03oA2gIR0Csl+lajesQdX2UKGgGR0CD0zRDTjNqaAdN6ANoCEdArJgmknCwbHV9lChoBkdAiizet0V8C2gHTegDaAhHQKyb4miQDFJ1fZQoaAZHQJJHWBXjlxRoB03oA2gIR0CsoDIQWepXdX2UKGgGR0CV97P91loUaAdN6ANoCEdArKUTcdo373V9lChoBkdAmQBS7sfJWGgHTegDaAhHQKylOuq3mV91fZQoaAZHQJjYGKpDNQloB03oA2gIR0CsqLVXeWOZdX2UKGgGR0CdbNW4EwFlaAdN6ANoCEdArK0lYlpoK3V9lChoBkdAm60rmZE2HmgHTegDaAhHQKy0NlEqlP91fZQoaAZHQJnQRU4rBj5oB03oA2gIR0CstHMhX8wYdX2UKGgGR0CUqIdZq20BaAdN6ANoCEdArLl+WQfZEnV9lChoBkdAmsPA2606YGgHTegDaAhHQKy9tyLhrFh1fZQoaAZHQJ2HLnlnyupoB03oA2gIR0CswpVVghKUdX2UKGgGR0Cav5yzXz19aAdN6ANoCEdArMLA1He7+XV9lChoBkdAlSS5Nj9XLmgHTegDaAhHQKzGVSApazN1fZQoaAZHQJkpmX6ZYxNoB03oA2gIR0Csypg62fCidX2UKGgGR0CbD8U1yeZoaAdN6ANoCEdArNDYwudwvXV9lChoBkdAnPII0uUUwmgHTegDaAhHQKzRFnOB19x1fZQoaAZHQJqLGdPLxI9oB03oA2gIR0Cs1oashgVodX2UKGgGR0CX/4/dqL0jaAdN6ANoCEdArNtoBV+7UXV9lChoBkdAlP7DpTuOTGgHTegDaAhHQKzglizcAR11fZQoaAZHQJJ/l6QeV9poB03oA2gIR0Cs4L2qcVgydX2UKGgGR0CTOxnc+JP7aAdN6ANoCEdArORp5JK8MHV9lChoBkdAlmSpMHryD2gHTegDaAhHQKzoqJAMUh51fZQoaAZHQJnZKNVBD5VoB03oA2gIR0Cs7mnXNC7cdX2UKGgGR0CZOR/SH/LlaAdN6ANoCEdArO6itLcsUnV9lChoBkdAmT38XFcY7GgHTegDaAhHQKz0GRJ2+wl1fZQoaAZHQJ6JjZqVQhxoB03oA2gIR0Cs+Wmecx0udX2UKGgGR0Ccwjg5R0lraAdN6ANoCEdArP4zZ13dK3V9lChoBkdAnndke2d/a2gHTegDaAhHQKz+Xj0cwQF1fZQoaAZHQJ0qPCrLhaVoB03oA2gIR0CtAdzYEnstdX2UKGgGR0CcT0GsFMZhaAdN6ANoCEdArQYiDwpe/3V9lChoBkdAk0nWCdz4lGgHTegDaAhHQK0LD14gRsd1fZQoaAZHQJ7Cys0YTCdoB03oA2gIR0CtCzvwd8zAdX2UKGgGR0CcUsHCXQdCaAdN6ANoCEdArRBZAQg9vHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8825ced20488d92e712bb846edb6092e4133f4893225f4a8cb1fe8e97ad519ea
|
3 |
+
size 1212393
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1960.9075501293323, "std_reward": 50.46783495553419, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-28T03:46:54.716948"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b1552065a80b729c3f6de27c6567e1230161edeae9f4bf2e14963134a0395f1
|
3 |
+
size 2176
|