Trained longer
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.46 +/- 0.37
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f48384eb23cada7d790cf38af6f203862b19a78cb3cea749452bcc88b489150
|
3 |
+
size 108073
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 500000,
|
23 |
+
"_total_timesteps": 500000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1685249606707116816,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAb4jnPl2Cgb2XSC4/b4jnPl2Cgb2XSC4/b4jnPl2Cgb2XSC4/b4jnPl2Cgb2XSC4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYk+pv6H/Jj9TRsK/IWH+PvFOub89BTu/f6BIveGimj1S2Sa/tMGPv/aipz/PZS6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABviOc+XYKBvZdILj8CQB48nPU+u4NpPztviOc+XYKBvZdILj8CQB48nPU+u4NpPztviOc+XYKBvZdILj8CQB48nPU+u4NpPztviOc+XYKBvZdILj8CQB48nPU+u4NpPzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.45221278 -0.06323693 0.68079513]\n [ 0.45221278 -0.06323693 0.68079513]\n [ 0.45221278 -0.06323693 0.68079513]\n [ 0.45221278 -0.06323693 0.68079513]]",
|
38 |
+
"desired_goal": "[[-1.3227351 0.6523381 -1.5177711 ]\n [ 0.49683478 -1.4477216 -0.7305487 ]\n [-0.04898119 0.07550598 -0.65175354]\n [-1.1230989 1.3096607 -0.681241 ]]",
|
39 |
+
"observation": "[[ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]\n [ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]\n [ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]\n [ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAVfIPfxqxj1zqG8+B+msvUeoAL28GAw+7D7Nvd8IEL5yTgw+viQ1vI7Uaz2kWqs9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.0978222 0.09688374 0.23404102]\n [-0.08442884 -0.03141048 0.1368131 ]\n [-0.10021767 -0.14065884 0.137018 ]\n [-0.01105612 0.05757575 0.08366898]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBkt1AS8z87+UhpRSlIwBbJRLMowBdJRHQLRQxCJ40Mx1fZQoaAZoCWgPQwh3gv3XuWn7v5SGlFKUaBVLMmgWR0C0UKVYEGJOdX2UKGgGaAloD0MIgLdAguKH97+UhpRSlGgVSzJoFkdAtFCHb48EFHV9lChoBmgJaA9DCKSpnsw/OvK/lIaUUpRoFUsyaBZHQLRQab2lEZ11fZQoaAZoCWgPQwgkYHR5c/j5v5SGlFKUaBVLMmgWR0C0UXjcM3IddX2UKGgGaAloD0MIUn+9woK7+7+UhpRSlGgVSzJoFkdAtFFZk5IYnHV9lChoBmgJaA9DCKRt/InKhve/lIaUUpRoFUsyaBZHQLRROwz+FUR1fZQoaAZoCWgPQwjkvWplwi/mv5SGlFKUaBVLMmgWR0C0URzshPj5dX2UKGgGaAloD0MIoBUYsroV9b+UhpRSlGgVSzJoFkdAtFH4Dmr8znV9lChoBmgJaA9DCHrGvmTjAfm/lIaUUpRoFUsyaBZHQLRR2LwnYxt1fZQoaAZoCWgPQwhlUG1wInrlv5SGlFKUaBVLMmgWR0C0UbpRTCLudX2UKGgGaAloD0MIeuBjsOKU+7+UhpRSlGgVSzJoFkdAtFGcLORkmXV9lChoBmgJaA9DCA1tADYgQve/lIaUUpRoFUsyaBZHQLRSfPI4lyB1fZQoaAZoCWgPQwgZA+s4fqjuv5SGlFKUaBVLMmgWR0C0Ul2qo60ZdX2UKGgGaAloD0MIWtdoOdAD8L+UhpRSlGgVSzJoFkdAtFI/QWvbGnV9lChoBmgJaA9DCBwHXi13ZvC/lIaUUpRoFUsyaBZHQLRSIRnezld1fZQoaAZoCWgPQwjknq7uWCzxv5SGlFKUaBVLMmgWR0C0UwHeenQ6dX2UKGgGaAloD0MIRluVRPZB7b+UhpRSlGgVSzJoFkdAtFLiguh9LHV9lChoBmgJaA9DCLZpbK8Fve+/lIaUUpRoFUsyaBZHQLRSxBuGbkR1fZQoaAZoCWgPQwjjcVEtIsr0v5SGlFKUaBVLMmgWR0C0UqXvlU6xdX2UKGgGaAloD0MIn3JMFvff8b+UhpRSlGgVSzJoFkdAtFOIw1zhgnV9lChoBmgJaA9DCPM64pANZPC/lIaUUpRoFUsyaBZHQLRTaWtlqah1fZQoaAZoCWgPQwiG5c+3BYv9v5SGlFKUaBVLMmgWR0C0U0sMuvlmdX2UKGgGaAloD0MIJm4VxEBX9r+UhpRSlGgVSzJoFkdAtFMswco6S3V9lChoBmgJaA9DCOS8/48T5vO/lIaUUpRoFUsyaBZHQLRUCxxT8511fZQoaAZoCWgPQwiZKa2/JUD1v5SGlFKUaBVLMmgWR0C0U+v+S8radX2UKGgGaAloD0MIKAr0iTxJ7b+UhpRSlGgVSzJoFkdAtFPNy0a6z3V9lChoBmgJaA9DCNMW1/hMtvG/lIaUUpRoFUsyaBZHQLRTr8Lront1fZQoaAZoCWgPQwi7fVaZKW3wv5SGlFKUaBVLMmgWR0C0VJ9wiqyXdX2UKGgGaAloD0MItCH/zCD+87+UhpRSlGgVSzJoFkdAtFSAJrtVrHV9lChoBmgJaA9DCKgY529Coey/lIaUUpRoFUsyaBZHQLRUYfTkQwt1fZQoaAZoCWgPQwh1c/G3PcHwv5SGlFKUaBVLMmgWR0C0VEPHxSYPdX2UKGgGaAloD0MIDMnJxK3C/b+UhpRSlGgVSzJoFkdAtFUlMpPRA3V9lChoBmgJaA9DCCIXnMHfr/K/lIaUUpRoFUsyaBZHQLRVBgOz6ad1fZQoaAZoCWgPQwjSjEXT2cnyv5SGlFKUaBVLMmgWR0C0VOefRNRFdX2UKGgGaAloD0MIVklkH2TZ47+UhpRSlGgVSzJoFkdAtFTJclgMMXV9lChoBmgJaA9DCAdA3NWriPS/lIaUUpRoFUsyaBZHQLRVrXfIjnp1fZQoaAZoCWgPQwhZTkLpC2H6v5SGlFKUaBVLMmgWR0C0VY4iC8ODdX2UKGgGaAloD0MI78ouGFyz8L+UhpRSlGgVSzJoFkdAtFVvs/pt8HV9lChoBmgJaA9DCPlLi/ok9++/lIaUUpRoFUsyaBZHQLRVUYfW+XZ1fZQoaAZoCWgPQwi29dN/1rzzv5SGlFKUaBVLMmgWR0C0Vi8LF4s3dX2UKGgGaAloD0MIj+OHSiNm6r+UhpRSlGgVSzJoFkdAtFYPvCuU2XV9lChoBmgJaA9DCIy9F1+0x/K/lIaUUpRoFUsyaBZHQLRV8V6eGwl1fZQoaAZoCWgPQwiXHHdKByvzv5SGlFKUaBVLMmgWR0C0VdMeCCjDdX2UKGgGaAloD0MIpkOn591Y6L+UhpRSlGgVSzJoFkdAtFazm/336HV9lChoBmgJaA9DCGLWi6Gc6O2/lIaUUpRoFUsyaBZHQLRWlFERaox1fZQoaAZoCWgPQwiE04IXfQXov5SGlFKUaBVLMmgWR0C0VnXXd0q6dX2UKGgGaAloD0MIY5eo3hrY77+UhpRSlGgVSzJoFkdAtFZXtdAxBXV9lChoBmgJaA9DCJD2P8BaNee/lIaUUpRoFUsyaBZHQLRXNa3Zwn91fZQoaAZoCWgPQwgf2scKftvzv5SGlFKUaBVLMmgWR0C0VxZjc2zfdX2UKGgGaAloD0MIDFpIwOjy7r+UhpRSlGgVSzJoFkdAtFb39JjDsXV9lChoBmgJaA9DCOyJrgs/OOm/lIaUUpRoFUsyaBZHQLRW2awljVh1fZQoaAZoCWgPQwj36A33kZvxv5SGlFKUaBVLMmgWR0C0V7re2uxKdX2UKGgGaAloD0MI+1ksRfIV5L+UhpRSlGgVSzJoFkdAtFebmbLEDXV9lChoBmgJaA9DCL2Pozmycu+/lIaUUpRoFUsyaBZHQLRXfTRplBh1fZQoaAZoCWgPQwgtXcE24sn0v5SGlFKUaBVLMmgWR0C0V18XenAJdX2UKGgGaAloD0MI8rVnlgTo8L+UhpRSlGgVSzJoFkdAtFhEEs8PnXV9lChoBmgJaA9DCLRXHw99d+a/lIaUUpRoFUsyaBZHQLRYJLjPv8Z1fZQoaAZoCWgPQwg+JlKazWPgv5SGlFKUaBVLMmgWR0C0WAZckdFOdX2UKGgGaAloD0MIU+i8xi6R+b+UhpRSlGgVSzJoFkdAtFfoNG3F1nV9lChoBmgJaA9DCKlqgqj7AOu/lIaUUpRoFUsyaBZHQLRY0P+n62x1fZQoaAZoCWgPQwhtOZfiqjL0v5SGlFKUaBVLMmgWR0C0WLGSIP9UdX2UKGgGaAloD0MIMsueBDZn8b+UhpRSlGgVSzJoFkdAtFiTJ9y93HV9lChoBmgJaA9DCJ8fRgiPNvm/lIaUUpRoFUsyaBZHQLRYdQg9vCN1fZQoaAZoCWgPQwjqBgq8k0/zv5SGlFKUaBVLMmgWR0C0WVhusLfDdX2UKGgGaAloD0MI/5QqUfbW/L+UhpRSlGgVSzJoFkdAtFk5Qj2SMnV9lChoBmgJaA9DCPH1tS41wuy/lIaUUpRoFUsyaBZHQLRZGuWa+ex1fZQoaAZoCWgPQwjPTDCcaxjxv5SGlFKUaBVLMmgWR0C0WPzASFoMdX2UKGgGaAloD0MIy9sRTgve/7+UhpRSlGgVSzJoFkdAtFnglme18nV9lChoBmgJaA9DCJsCmZ1FL/G/lIaUUpRoFUsyaBZHQLRZwUPhAGB1fZQoaAZoCWgPQwhQGf8+4wLyv5SGlFKUaBVLMmgWR0C0WaLnHNordX2UKGgGaAloD0MICd/7G7RX+7+UhpRSlGgVSzJoFkdAtFmEzbeuWHV9lChoBmgJaA9DCI/GoX4Xtve/lIaUUpRoFUsyaBZHQLRaYApazNV1fZQoaAZoCWgPQwgxQni0cUTpv5SGlFKUaBVLMmgWR0C0WkC35N48dX2UKGgGaAloD0MIo81xbhPu8b+UhpRSlGgVSzJoFkdAtFoiUs4DLnV9lChoBmgJaA9DCPAWSFD8GOq/lIaUUpRoFUsyaBZHQLRaBCgbp/x1fZQoaAZoCWgPQwhmpN5TOe0BwJSGlFKUaBVLMmgWR0C0WuJiVjZtdX2UKGgGaAloD0MIkdCWcymuDcCUhpRSlGgVSzJoFkdAtFrDDR+jM3V9lChoBmgJaA9DCDCEnPf/MfS/lIaUUpRoFUsyaBZHQLRapJaq0dB1fZQoaAZoCWgPQwj/XZ8561Pwv5SGlFKUaBVLMmgWR0C0WoZl4C6pdX2UKGgGaAloD0MIPWNfsvHg+r+UhpRSlGgVSzJoFkdAtFuH81n/UHV9lChoBmgJaA9DCD1FDhE3xw3AlIaUUpRoFUsyaBZHQLRbaVN5+ph1fZQoaAZoCWgPQwg1m8dhML8LwJSGlFKUaBVLMmgWR0C0W0ta2WpqdX2UKGgGaAloD0MIWYejq3R38b+UhpRSlGgVSzJoFkdAtFstkFwDNnV9lChoBmgJaA9DCOdQhqqYSu+/lIaUUpRoFUsyaBZHQLRcV76Hj6x1fZQoaAZoCWgPQwgZkpOJW8X2v5SGlFKUaBVLMmgWR0C0XDifcvdudX2UKGgGaAloD0MIz6Pi/46o7b+UhpRSlGgVSzJoFkdAtFwajoIOY3V9lChoBmgJaA9DCAVrnE1HwPa/lIaUUpRoFUsyaBZHQLRb/Ne+mFd1fZQoaAZoCWgPQwhyxFp8CoDrv5SGlFKUaBVLMmgWR0C0XTC7wrlOdX2UKGgGaAloD0MIk4/dBUqK77+UhpRSlGgVSzJoFkdAtF0RznzQNXV9lChoBmgJaA9DCEBoPXyZ6PC/lIaUUpRoFUsyaBZHQLRc87SiM5x1fZQoaAZoCWgPQwgFqKlla/35v5SGlFKUaBVLMmgWR0C0XNYFiay9dX2UKGgGaAloD0MIH9jxXyBI/L+UhpRSlGgVSzJoFkdAtF4hp9JBgXV9lChoBmgJaA9DCN46/3bZ7/W/lIaUUpRoFUsyaBZHQLReAsJY1YR1fZQoaAZoCWgPQwid9L7xtafxv5SGlFKUaBVLMmgWR0C0XeTm8ujAdX2UKGgGaAloD0MIptHkYgys7L+UhpRSlGgVSzJoFkdAtF3Hv1DjR3V9lChoBmgJaA9DCBrh7UEIyPe/lIaUUpRoFUsyaBZHQLRfCJLdvbZ1fZQoaAZoCWgPQwj4xDpVvuf/v5SGlFKUaBVLMmgWR0C0XunCj1wpdX2UKGgGaAloD0MI4e8XsyWr7r+UhpRSlGgVSzJoFkdAtF7Lundfs3V9lChoBmgJaA9DCNfAVgkWJwLAlIaUUpRoFUsyaBZHQLRerp9JBgN1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 75000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca8421d03c0f5a23ebba1e5cebcd927b29cd003b9a1c89499057da0e19d3bb46
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd69b29bc0cc6cef946c0f4f8ea83f60f0addf80ba946d09cd222fc1230f4795
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6fbd4a65f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6fbd4b0f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685245781482012488, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWn3oPj9HBD2jQzc/Wn3oPj9HBD2jQzc/Wn3oPj9HBD2jQzc/Wn3oPj9HBD2jQzc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA02CWP1P8gz93tk+/gauHP4HRSj/P7B6//hqjP7YNdz2ams8/y17RPyyQUT41/cu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABafeg+P0cEPaNDNz8QGpU8UCxIO3JCsjxafeg+P0cEPaNDNz8QGpU8UCxIO3JCsjxafeg+P0cEPaNDNz8QGpU8UCxIO3JCsjxafeg+P0cEPaNDNz8QGpU8UCxIO3JCsjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45408136 0.03229451 0.7158758 ]\n [0.45408136 0.03229451 0.7158758 ]\n [0.45408136 0.03229451 0.7158758 ]\n [0.45408136 0.03229451 0.7158758 ]]", "desired_goal": "[[ 1.1748298 1.0311378 -0.81137794]\n [ 1.0599214 0.7922593 -0.6208009 ]\n [ 1.2742612 0.06031581 1.6219056 ]\n [ 1.6357054 0.20465153 -1.5936648 ]]", "observation": "[[0.45408136 0.03229451 0.7158758 0.0182009 0.0030544 0.0217602 ]\n [0.45408136 0.03229451 0.7158758 0.0182009 0.0030544 0.0217602 ]\n [0.45408136 0.03229451 0.7158758 0.0182009 0.0030544 0.0217602 ]\n [0.45408136 0.03229451 0.7158758 0.0182009 0.0030544 0.0217602 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuvQ4vW2cBD5xOSM8JVWlvQ/R7726dIA81LTUveN0+bzBSjE+fPeKPeGuw73Xfjo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04515526 0.12950297 0.00996243]\n [-0.08072881 -0.11709797 0.01568066]\n [-0.10386053 -0.03045124 0.17313673]\n [ 0.06785485 -0.0955484 0.04553112]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI02uzsRJjE8CUhpRSlIwBbJRLMowBdJRHQKacMXXRPXV1fZQoaAZoCWgPQwgtQNtq1nkBwJSGlFKUaBVLMmgWR0Cmm/Qzk6tDdX2UKGgGaAloD0MI8YKI1LRLCsCUhpRSlGgVSzJoFkdAppu3p8neBXV9lChoBmgJaA9DCCBFnbmHtBPAlIaUUpRoFUsyaBZHQKabe4qgAZN1fZQoaAZoCWgPQwiRCfg1kqQJwJSGlFKUaBVLMmgWR0CmnZWETQE7dX2UKGgGaAloD0MIQGoTJ/f7A8CUhpRSlGgVSzJoFkdApp1Xkq+ajXV9lChoBmgJaA9DCG2tLxLaohHAlIaUUpRoFUsyaBZHQKadGwosqax1fZQoaAZoCWgPQwiBdocUA+QLwJSGlFKUaBVLMmgWR0CmnN7qyGBXdX2UKGgGaAloD0MI+BkXDoQkC8CUhpRSlGgVSzJoFkdApp8Risny/nV9lChoBmgJaA9DCBo09E9wURPAlIaUUpRoFUsyaBZHQKae09TP0I11fZQoaAZoCWgPQwjmBdhHp04DwJSGlFKUaBVLMmgWR0CmnpdlNDc/dX2UKGgGaAloD0MIxO3QsBg1CcCUhpRSlGgVSzJoFkdApp5bb8FY+3V9lChoBmgJaA9DCNofKLftWxLAlIaUUpRoFUsyaBZHQKagkJxeb/h1fZQoaAZoCWgPQwhXryKjA1IKwJSGlFKUaBVLMmgWR0CmoFKyv9tNdX2UKGgGaAloD0MIUiY1tAFYA8CUhpRSlGgVSzJoFkdApqAWbiIcinV9lChoBmgJaA9DCGMq/YSz2wXAlIaUUpRoFUsyaBZHQKaf2uvllsh1fZQoaAZoCWgPQwi6oSk7/aAEwJSGlFKUaBVLMmgWR0Cmog40l7dBdX2UKGgGaAloD0MI9zsUBfpEBMCUhpRSlGgVSzJoFkdApqHP/YJ3PnV9lChoBmgJaA9DCCcW+IpuHQ7AlIaUUpRoFUsyaBZHQKahk6hg3Lp1fZQoaAZoCWgPQwhG7unqjlUQwJSGlFKUaBVLMmgWR0CmoVefRNRFdX2UKGgGaAloD0MIK4cW2c5XA8CUhpRSlGgVSzJoFkdApqOPqPfbbnV9lChoBmgJaA9DCGo0uRgDKw3AlIaUUpRoFUsyaBZHQKajUc7yQPt1fZQoaAZoCWgPQwgtsp3vp4YNwJSGlFKUaBVLMmgWR0CmoxVeSjgydX2UKGgGaAloD0MIp1oLs9AuFsCUhpRSlGgVSzJoFkdApqLZouf29XV9lChoBmgJaA9DCHtMpDSbRw7AlIaUUpRoFUsyaBZHQKalC/IsAed1fZQoaAZoCWgPQwhCYOXQItsAwJSGlFKUaBVLMmgWR0CmpM2kSElFdX2UKGgGaAloD0MIXcE24smuEsCUhpRSlGgVSzJoFkdApqSRGWldknV9lChoBmgJaA9DCCY3iqw1VAfAlIaUUpRoFUsyaBZHQKakVT8YQ8R1fZQoaAZoCWgPQwh7hQX3Ax78v5SGlFKUaBVLMmgWR0Cmpixe9i+ddX2UKGgGaAloD0MIFm75SEoaDMCUhpRSlGgVSzJoFkdApqXtZkkKNXV9lChoBmgJaA9DCJVjsrj/yP+/lIaUUpRoFUsyaBZHQKalsFqSHM51fZQoaAZoCWgPQwgLDFnd6nkFwJSGlFKUaBVLMmgWR0CmpXO/cnE3dX2UKGgGaAloD0MIg09z8iJTDMCUhpRSlGgVSzJoFkdApqcQA6uGK3V9lChoBmgJaA9DCMY0071O6gbAlIaUUpRoFUsyaBZHQKam0Rs/IKd1fZQoaAZoCWgPQwiRD3o2qz79v5SGlFKUaBVLMmgWR0CmppQA2hqTdX2UKGgGaAloD0MIPC0/cJVnDMCUhpRSlGgVSzJoFkdApqZXhbW3B3V9lChoBmgJaA9DCLlvtU5czg3AlIaUUpRoFUsyaBZHQKaoAiJO32F1fZQoaAZoCWgPQwg1XrpJDEIMwJSGlFKUaBVLMmgWR0Cmp8Msg+yJdX2UKGgGaAloD0MIK4iBrn2hDcCUhpRSlGgVSzJoFkdApqeGDUVi4XV9lChoBmgJaA9DCKfn3VhQ+AfAlIaUUpRoFUsyaBZHQKanSXb/Ot51fZQoaAZoCWgPQwjp0yr6Q3MRwJSGlFKUaBVLMmgWR0CmqOYrSVnmdX2UKGgGaAloD0MIX5m36jqkE8CUhpRSlGgVSzJoFkdApqinPVurInV9lChoBmgJaA9DCKio+pXOxxHAlIaUUpRoFUsyaBZHQKaoaiX6ZYx1fZQoaAZoCWgPQwh56pEGtxUCwJSGlFKUaBVLMmgWR0CmqC2gnMMadX2UKGgGaAloD0MIU5YhjnXREMCUhpRSlGgVSzJoFkdApqnLufEn9nV9lChoBmgJaA9DCC6PNSODHArAlIaUUpRoFUsyaBZHQKapjPLPldV1fZQoaAZoCWgPQwg7inPU0fESwJSGlFKUaBVLMmgWR0CmqU/yf+S9dX2UKGgGaAloD0MIfLWjOEe9DMCUhpRSlGgVSzJoFkdApqkTW5H3DnV9lChoBmgJaA9DCAmp29lXvhHAlIaUUpRoFUsyaBZHQKaqswkgOjJ1fZQoaAZoCWgPQwhN+KV+3hQIwJSGlFKUaBVLMmgWR0CmqnQkona4dX2UKGgGaAloD0MIfQOTG0WWEcCUhpRSlGgVSzJoFkdApqo3C0ngHnV9lChoBmgJaA9DCNswCoLH1xPAlIaUUpRoFUsyaBZHQKap+r5qM3t1fZQoaAZoCWgPQwikGvZ7Yh0NwJSGlFKUaBVLMmgWR0Cmq5WbXpW4dX2UKGgGaAloD0MIb2dfeZC+A8CUhpRSlGgVSzJoFkdApqtWt6ol2XV9lChoBmgJaA9DCM3lBkMdthDAlIaUUpRoFUsyaBZHQKarGZfD1oR1fZQoaAZoCWgPQwjEswQZAdUQwJSGlFKUaBVLMmgWR0Cmqt0MPSUkdX2UKGgGaAloD0MIAfxTqkTZ+7+UhpRSlGgVSzJoFkdApqxxmRNh3XV9lChoBmgJaA9DCJmghm9hHQPAlIaUUpRoFUsyaBZHQKasMqrBCUp1fZQoaAZoCWgPQwgmxjL9EpEDwJSGlFKUaBVLMmgWR0Cmq/WSlnAZdX2UKGgGaAloD0MIDtsWZTbI+b+UhpRSlGgVSzJoFkdApqu49RrJsHV9lChoBmgJaA9DCBu9GqA09AvAlIaUUpRoFUsyaBZHQKatZRSgoPV1fZQoaAZoCWgPQwhWuOUjKakSwJSGlFKUaBVLMmgWR0CmrSZLZi/gdX2UKGgGaAloD0MI3QvMCkU6D8CUhpRSlGgVSzJoFkdApqzpVOsT4HV9lChoBmgJaA9DCAHcLF4sLArAlIaUUpRoFUsyaBZHQKasrPyCnP51fZQoaAZoCWgPQwibVZ+rrbgCwJSGlFKUaBVLMmgWR0CmrkkgGKQ8dX2UKGgGaAloD0MIB/AWSFC8+7+UhpRSlGgVSzJoFkdApq4LZg5R0nV9lChoBmgJaA9DCGhaYmU0AhPAlIaUUpRoFUsyaBZHQKatzyS3b211fZQoaAZoCWgPQwi6ERYVcZoCwJSGlFKUaBVLMmgWR0CmrZMZ5zHTdX2UKGgGaAloD0MIDMwKRbrf/r+UhpRSlGgVSzJoFkdApq8tTisGPnV9lChoBmgJaA9DCDl9PV+zDBLAlIaUUpRoFUsyaBZHQKau7qFAVwh1fZQoaAZoCWgPQwhWurvOhhwCwJSGlFKUaBVLMmgWR0CmrrH58BuGdX2UKGgGaAloD0MIZJY9CWwOA8CUhpRSlGgVSzJoFkdApq51d1MdtHV9lChoBmgJaA9DCBQjS+ZYPg3AlIaUUpRoFUsyaBZHQKawDxuKoAJ1fZQoaAZoCWgPQwhEh8CRQGMLwJSGlFKUaBVLMmgWR0Cmr9ByKekIdX2UKGgGaAloD0MIBrmLMEUpEMCUhpRSlGgVSzJoFkdApq+Tghr303V9lChoBmgJaA9DCAOwARHi+hDAlIaUUpRoFUsyaBZHQKavVuPV/c51fZQoaAZoCWgPQwigwabOo8IMwJSGlFKUaBVLMmgWR0CmsPFZPl+3dX2UKGgGaAloD0MILxSwHYyYDMCUhpRSlGgVSzJoFkdAprCycAimmHV9lChoBmgJaA9DCGw/GePDDAvAlIaUUpRoFUsyaBZHQKawdV7Qb+91fZQoaAZoCWgPQwieQUP/BNcHwJSGlFKUaBVLMmgWR0CmsDi/O+qSdX2UKGgGaAloD0MIMXxETIkUF8CUhpRSlGgVSzJoFkdAprHJUvPC23V9lChoBmgJaA9DCAXbiCe7OQvAlIaUUpRoFUsyaBZHQKaxinBtUGV1fZQoaAZoCWgPQwg7b2OzI/URwJSGlFKUaBVLMmgWR0CmsU1mJ3xGdX2UKGgGaAloD0MI66hqgqibDcCUhpRSlGgVSzJoFkdAprEQxHoX9HV9lChoBmgJaA9DCI4hADj2rArAlIaUUpRoFUsyaBZHQKayocAiml91fZQoaAZoCWgPQwgYBcHj25sNwJSGlFKUaBVLMmgWR0CmsmLWy1NQdX2UKGgGaAloD0MIIXNlUG0wCcCUhpRSlGgVSzJoFkdAprImOZLIxXV9lChoBmgJaA9DCGqjOh3ImhbAlIaUUpRoFUsyaBZHQKax6nTiKix1fZQoaAZoCWgPQwgKvJNPj40DwJSGlFKUaBVLMmgWR0Cms3s98qnWdX2UKGgGaAloD0MIy/Yhb7maFcCUhpRSlGgVSzJoFkdAprM8ZzgdfnV9lChoBmgJaA9DCH47iQj/4hDAlIaUUpRoFUsyaBZHQKay/1YhdMV1fZQoaAZoCWgPQwhVTRB1H6AJwJSGlFKUaBVLMmgWR0CmssKmTC+DdX2UKGgGaAloD0MIoPzdO2pcEsCUhpRSlGgVSzJoFkdAprRUbJfYz3V9lChoBmgJaA9DCGluhbAaCwzAlIaUUpRoFUsyaBZHQKa0FX9R77d1fZQoaAZoCWgPQwjq6Lga2TUSwJSGlFKUaBVLMmgWR0Cms9hg/keZdX2UKGgGaAloD0MIAkht4uSeBMCUhpRSlGgVSzJoFkdAprOb3IuGsXV9lChoBmgJaA9DCLCPTl35rAPAlIaUUpRoFUsyaBZHQKa1LvF3pwF1fZQoaAZoCWgPQwghI6DCEcQSwJSGlFKUaBVLMmgWR0CmtO/1QIlddX2UKGgGaAloD0MI5qxPOSbrCMCUhpRSlGgVSzJoFkdAprSy0F8ohXV9lChoBmgJaA9DCJhO6zao/RfAlIaUUpRoFUsyaBZHQKa0duvUz9F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6fbd4a65f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6fbd4b0f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685249606707116816, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAb4jnPl2Cgb2XSC4/b4jnPl2Cgb2XSC4/b4jnPl2Cgb2XSC4/b4jnPl2Cgb2XSC4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYk+pv6H/Jj9TRsK/IWH+PvFOub89BTu/f6BIveGimj1S2Sa/tMGPv/aipz/PZS6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABviOc+XYKBvZdILj8CQB48nPU+u4NpPztviOc+XYKBvZdILj8CQB48nPU+u4NpPztviOc+XYKBvZdILj8CQB48nPU+u4NpPztviOc+XYKBvZdILj8CQB48nPU+u4NpPzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.45221278 -0.06323693 0.68079513]\n [ 0.45221278 -0.06323693 0.68079513]\n [ 0.45221278 -0.06323693 0.68079513]\n [ 0.45221278 -0.06323693 0.68079513]]", "desired_goal": "[[-1.3227351 0.6523381 -1.5177711 ]\n [ 0.49683478 -1.4477216 -0.7305487 ]\n [-0.04898119 0.07550598 -0.65175354]\n [-1.1230989 1.3096607 -0.681241 ]]", "observation": "[[ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]\n [ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]\n [ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]\n [ 0.45221278 -0.06323693 0.68079513 0.00965882 -0.00291381 0.00292072]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAVfIPfxqxj1zqG8+B+msvUeoAL28GAw+7D7Nvd8IEL5yTgw+viQ1vI7Uaz2kWqs9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0978222 0.09688374 0.23404102]\n [-0.08442884 -0.03141048 0.1368131 ]\n [-0.10021767 -0.14065884 0.137018 ]\n [-0.01105612 0.05757575 0.08366898]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBkt1AS8z87+UhpRSlIwBbJRLMowBdJRHQLRQxCJ40Mx1fZQoaAZoCWgPQwh3gv3XuWn7v5SGlFKUaBVLMmgWR0C0UKVYEGJOdX2UKGgGaAloD0MIgLdAguKH97+UhpRSlGgVSzJoFkdAtFCHb48EFHV9lChoBmgJaA9DCKSpnsw/OvK/lIaUUpRoFUsyaBZHQLRQab2lEZ11fZQoaAZoCWgPQwgkYHR5c/j5v5SGlFKUaBVLMmgWR0C0UXjcM3IddX2UKGgGaAloD0MIUn+9woK7+7+UhpRSlGgVSzJoFkdAtFFZk5IYnHV9lChoBmgJaA9DCKRt/InKhve/lIaUUpRoFUsyaBZHQLRROwz+FUR1fZQoaAZoCWgPQwjkvWplwi/mv5SGlFKUaBVLMmgWR0C0URzshPj5dX2UKGgGaAloD0MIoBUYsroV9b+UhpRSlGgVSzJoFkdAtFH4Dmr8znV9lChoBmgJaA9DCHrGvmTjAfm/lIaUUpRoFUsyaBZHQLRR2LwnYxt1fZQoaAZoCWgPQwhlUG1wInrlv5SGlFKUaBVLMmgWR0C0UbpRTCLudX2UKGgGaAloD0MIeuBjsOKU+7+UhpRSlGgVSzJoFkdAtFGcLORkmXV9lChoBmgJaA9DCA1tADYgQve/lIaUUpRoFUsyaBZHQLRSfPI4lyB1fZQoaAZoCWgPQwgZA+s4fqjuv5SGlFKUaBVLMmgWR0C0Ul2qo60ZdX2UKGgGaAloD0MIWtdoOdAD8L+UhpRSlGgVSzJoFkdAtFI/QWvbGnV9lChoBmgJaA9DCBwHXi13ZvC/lIaUUpRoFUsyaBZHQLRSIRnezld1fZQoaAZoCWgPQwjknq7uWCzxv5SGlFKUaBVLMmgWR0C0UwHeenQ6dX2UKGgGaAloD0MIRluVRPZB7b+UhpRSlGgVSzJoFkdAtFLiguh9LHV9lChoBmgJaA9DCLZpbK8Fve+/lIaUUpRoFUsyaBZHQLRSxBuGbkR1fZQoaAZoCWgPQwjjcVEtIsr0v5SGlFKUaBVLMmgWR0C0UqXvlU6xdX2UKGgGaAloD0MIn3JMFvff8b+UhpRSlGgVSzJoFkdAtFOIw1zhgnV9lChoBmgJaA9DCPM64pANZPC/lIaUUpRoFUsyaBZHQLRTaWtlqah1fZQoaAZoCWgPQwiG5c+3BYv9v5SGlFKUaBVLMmgWR0C0U0sMuvlmdX2UKGgGaAloD0MIJm4VxEBX9r+UhpRSlGgVSzJoFkdAtFMswco6S3V9lChoBmgJaA9DCOS8/48T5vO/lIaUUpRoFUsyaBZHQLRUCxxT8511fZQoaAZoCWgPQwiZKa2/JUD1v5SGlFKUaBVLMmgWR0C0U+v+S8radX2UKGgGaAloD0MIKAr0iTxJ7b+UhpRSlGgVSzJoFkdAtFPNy0a6z3V9lChoBmgJaA9DCNMW1/hMtvG/lIaUUpRoFUsyaBZHQLRTr8Lront1fZQoaAZoCWgPQwi7fVaZKW3wv5SGlFKUaBVLMmgWR0C0VJ9wiqyXdX2UKGgGaAloD0MItCH/zCD+87+UhpRSlGgVSzJoFkdAtFSAJrtVrHV9lChoBmgJaA9DCKgY529Coey/lIaUUpRoFUsyaBZHQLRUYfTkQwt1fZQoaAZoCWgPQwh1c/G3PcHwv5SGlFKUaBVLMmgWR0C0VEPHxSYPdX2UKGgGaAloD0MIDMnJxK3C/b+UhpRSlGgVSzJoFkdAtFUlMpPRA3V9lChoBmgJaA9DCCIXnMHfr/K/lIaUUpRoFUsyaBZHQLRVBgOz6ad1fZQoaAZoCWgPQwjSjEXT2cnyv5SGlFKUaBVLMmgWR0C0VOefRNRFdX2UKGgGaAloD0MIVklkH2TZ47+UhpRSlGgVSzJoFkdAtFTJclgMMXV9lChoBmgJaA9DCAdA3NWriPS/lIaUUpRoFUsyaBZHQLRVrXfIjnp1fZQoaAZoCWgPQwhZTkLpC2H6v5SGlFKUaBVLMmgWR0C0VY4iC8ODdX2UKGgGaAloD0MI78ouGFyz8L+UhpRSlGgVSzJoFkdAtFVvs/pt8HV9lChoBmgJaA9DCPlLi/ok9++/lIaUUpRoFUsyaBZHQLRVUYfW+XZ1fZQoaAZoCWgPQwi29dN/1rzzv5SGlFKUaBVLMmgWR0C0Vi8LF4s3dX2UKGgGaAloD0MIj+OHSiNm6r+UhpRSlGgVSzJoFkdAtFYPvCuU2XV9lChoBmgJaA9DCIy9F1+0x/K/lIaUUpRoFUsyaBZHQLRV8V6eGwl1fZQoaAZoCWgPQwiXHHdKByvzv5SGlFKUaBVLMmgWR0C0VdMeCCjDdX2UKGgGaAloD0MIpkOn591Y6L+UhpRSlGgVSzJoFkdAtFazm/336HV9lChoBmgJaA9DCGLWi6Gc6O2/lIaUUpRoFUsyaBZHQLRWlFERaox1fZQoaAZoCWgPQwiE04IXfQXov5SGlFKUaBVLMmgWR0C0VnXXd0q6dX2UKGgGaAloD0MIY5eo3hrY77+UhpRSlGgVSzJoFkdAtFZXtdAxBXV9lChoBmgJaA9DCJD2P8BaNee/lIaUUpRoFUsyaBZHQLRXNa3Zwn91fZQoaAZoCWgPQwgf2scKftvzv5SGlFKUaBVLMmgWR0C0VxZjc2zfdX2UKGgGaAloD0MIDFpIwOjy7r+UhpRSlGgVSzJoFkdAtFb39JjDsXV9lChoBmgJaA9DCOyJrgs/OOm/lIaUUpRoFUsyaBZHQLRW2awljVh1fZQoaAZoCWgPQwj36A33kZvxv5SGlFKUaBVLMmgWR0C0V7re2uxKdX2UKGgGaAloD0MI+1ksRfIV5L+UhpRSlGgVSzJoFkdAtFebmbLEDXV9lChoBmgJaA9DCL2Pozmycu+/lIaUUpRoFUsyaBZHQLRXfTRplBh1fZQoaAZoCWgPQwgtXcE24sn0v5SGlFKUaBVLMmgWR0C0V18XenAJdX2UKGgGaAloD0MI8rVnlgTo8L+UhpRSlGgVSzJoFkdAtFhEEs8PnXV9lChoBmgJaA9DCLRXHw99d+a/lIaUUpRoFUsyaBZHQLRYJLjPv8Z1fZQoaAZoCWgPQwg+JlKazWPgv5SGlFKUaBVLMmgWR0C0WAZckdFOdX2UKGgGaAloD0MIU+i8xi6R+b+UhpRSlGgVSzJoFkdAtFfoNG3F1nV9lChoBmgJaA9DCKlqgqj7AOu/lIaUUpRoFUsyaBZHQLRY0P+n62x1fZQoaAZoCWgPQwhtOZfiqjL0v5SGlFKUaBVLMmgWR0C0WLGSIP9UdX2UKGgGaAloD0MIMsueBDZn8b+UhpRSlGgVSzJoFkdAtFiTJ9y93HV9lChoBmgJaA9DCJ8fRgiPNvm/lIaUUpRoFUsyaBZHQLRYdQg9vCN1fZQoaAZoCWgPQwjqBgq8k0/zv5SGlFKUaBVLMmgWR0C0WVhusLfDdX2UKGgGaAloD0MI/5QqUfbW/L+UhpRSlGgVSzJoFkdAtFk5Qj2SMnV9lChoBmgJaA9DCPH1tS41wuy/lIaUUpRoFUsyaBZHQLRZGuWa+ex1fZQoaAZoCWgPQwjPTDCcaxjxv5SGlFKUaBVLMmgWR0C0WPzASFoMdX2UKGgGaAloD0MIy9sRTgve/7+UhpRSlGgVSzJoFkdAtFnglme18nV9lChoBmgJaA9DCJsCmZ1FL/G/lIaUUpRoFUsyaBZHQLRZwUPhAGB1fZQoaAZoCWgPQwhQGf8+4wLyv5SGlFKUaBVLMmgWR0C0WaLnHNordX2UKGgGaAloD0MICd/7G7RX+7+UhpRSlGgVSzJoFkdAtFmEzbeuWHV9lChoBmgJaA9DCI/GoX4Xtve/lIaUUpRoFUsyaBZHQLRaYApazNV1fZQoaAZoCWgPQwgxQni0cUTpv5SGlFKUaBVLMmgWR0C0WkC35N48dX2UKGgGaAloD0MIo81xbhPu8b+UhpRSlGgVSzJoFkdAtFoiUs4DLnV9lChoBmgJaA9DCPAWSFD8GOq/lIaUUpRoFUsyaBZHQLRaBCgbp/x1fZQoaAZoCWgPQwhmpN5TOe0BwJSGlFKUaBVLMmgWR0C0WuJiVjZtdX2UKGgGaAloD0MIkdCWcymuDcCUhpRSlGgVSzJoFkdAtFrDDR+jM3V9lChoBmgJaA9DCDCEnPf/MfS/lIaUUpRoFUsyaBZHQLRapJaq0dB1fZQoaAZoCWgPQwj/XZ8561Pwv5SGlFKUaBVLMmgWR0C0WoZl4C6pdX2UKGgGaAloD0MIPWNfsvHg+r+UhpRSlGgVSzJoFkdAtFuH81n/UHV9lChoBmgJaA9DCD1FDhE3xw3AlIaUUpRoFUsyaBZHQLRbaVN5+ph1fZQoaAZoCWgPQwg1m8dhML8LwJSGlFKUaBVLMmgWR0C0W0ta2WpqdX2UKGgGaAloD0MIWYejq3R38b+UhpRSlGgVSzJoFkdAtFstkFwDNnV9lChoBmgJaA9DCOdQhqqYSu+/lIaUUpRoFUsyaBZHQLRcV76Hj6x1fZQoaAZoCWgPQwgZkpOJW8X2v5SGlFKUaBVLMmgWR0C0XDifcvdudX2UKGgGaAloD0MIz6Pi/46o7b+UhpRSlGgVSzJoFkdAtFwajoIOY3V9lChoBmgJaA9DCAVrnE1HwPa/lIaUUpRoFUsyaBZHQLRb/Ne+mFd1fZQoaAZoCWgPQwhyxFp8CoDrv5SGlFKUaBVLMmgWR0C0XTC7wrlOdX2UKGgGaAloD0MIk4/dBUqK77+UhpRSlGgVSzJoFkdAtF0RznzQNXV9lChoBmgJaA9DCEBoPXyZ6PC/lIaUUpRoFUsyaBZHQLRc87SiM5x1fZQoaAZoCWgPQwgFqKlla/35v5SGlFKUaBVLMmgWR0C0XNYFiay9dX2UKGgGaAloD0MIH9jxXyBI/L+UhpRSlGgVSzJoFkdAtF4hp9JBgXV9lChoBmgJaA9DCN46/3bZ7/W/lIaUUpRoFUsyaBZHQLReAsJY1YR1fZQoaAZoCWgPQwid9L7xtafxv5SGlFKUaBVLMmgWR0C0XeTm8ujAdX2UKGgGaAloD0MIptHkYgys7L+UhpRSlGgVSzJoFkdAtF3Hv1DjR3V9lChoBmgJaA9DCBrh7UEIyPe/lIaUUpRoFUsyaBZHQLRfCJLdvbZ1fZQoaAZoCWgPQwj4xDpVvuf/v5SGlFKUaBVLMmgWR0C0XunCj1wpdX2UKGgGaAloD0MI4e8XsyWr7r+UhpRSlGgVSzJoFkdAtF7Lundfs3V9lChoBmgJaA9DCNfAVgkWJwLAlIaUUpRoFUsyaBZHQLRerp9JBgN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.4612018041312695, "std_reward": 0.36807855939631284, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-28T05:16:45.002207"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdaffd2056bdf3ea0bd070b56178f39c58ae61a5ef34de76069508e47da02efe
|
3 |
size 2387
|