erickrribeiro commited on
Commit
d2bc92a
·
verified ·
1 Parent(s): f8a0bf5

Model save

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: neuralmind/bert-base-portuguese-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - __main__
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: ner_model
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: __main__
21
+ type: __main__
22
+ config: local
23
+ split: test
24
+ args: local
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.5687651985949743
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.6082935991908683
32
+ - name: F1
33
+ type: f1
34
+ value: 0.5878656705997346
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.7791311866764413
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # ner_model
44
+
45
+ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the __main__ dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.6378
48
+ - Precision: 0.5688
49
+ - Recall: 0.6083
50
+ - F1: 0.5879
51
+ - Accuracy: 0.7791
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 4
72
+ - eval_batch_size: 4
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 2
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.6703 | 1.0 | 5737 | 0.6732 | 0.5189 | 0.5700 | 0.5432 | 0.7605 |
83
+ | 0.5251 | 2.0 | 11474 | 0.6378 | 0.5688 | 0.6083 | 0.5879 | 0.7791 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.36.0
89
+ - Pytorch 2.0.1+cu117
90
+ - Datasets 2.14.4
91
+ - Tokenizers 0.15.0