ppo-LunarLander-v2 / config.json
erodola's picture
Upload PPO LunarLander-v2 trained agent
a27fa68
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6cbda98ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6cbda98f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6cbda99000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6cbda99090>", "_build": "<function ActorCriticPolicy._build at 0x7a6cbda99120>", "forward": "<function ActorCriticPolicy.forward at 0x7a6cbda991b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6cbda99240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6cbda992d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6cbda99360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6cbda993f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6cbda99480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6cbda99510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6cbda46500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697094754977025047, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABojjr2uS4a6o+uNuVf8l7SwuhI7y/CkOAAAAAAAAIA/LoXVvqtG1D48SJ0+adXCvneTWL6iBFc+AAAAAAAAAADTHw++QRjRPY5LfT5jGze+TMBePcuUTb0AAAAAAAAAAGaBzTzDVU+6ayNAuneNnbTHS5k7a2BgOQAAgD8AAIA/zXDXu+yp5bnujUQzFnD2LqX4WDtEp8azAACAPwAAgD/zMpW9BcYlPgjs5z3HXki+zoAovI97FboAAAAAAAAAAELsu77HiZ8+0PC3Pkbp5L5uiYS+LiSCPgAAAAAAAAAATeKGvXEZD7uroKs7baOKPAh0oryw0G89AACAPwAAgD/Nygi9ezquuibNirey5YqypR7LuU7FnjYAAIA/AACAPxNuLD6a1Rw/9rglvgAm7r6uh2c9iH1IvQAAAAAAAAAATbIjvj2VDbvgB+K3NeeAtKBFNTyOcgU3AACAPwAAgD8zz6A7w7E7urarOrnAqr81AJTFungCWTgAAIA/AACAP6YSyj3AW34/bQAPPikJyb4Ufhw+gugkPQAAAAAAAAAA5keTPeyD6rtRcg68GqSAPJl1N73WrFk9AACAPwAAgD+AkRq9CvqePkX/E71nSZe+o8rxvD6SRLwAAAAAAAAAAEoIU742cHY/9a0SvzTxL7/Mw4q+SsqBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC0Fd5Y5kuMAWyUTQsBjAF0lEdAlORgTmGM43V9lChoBkdAb6x9Q40dimgHTQoBaAhHQJTkvNSqEOB1fZQoaAZHQHDUNpAUtZpoB0vYaAhHQJTkyeK8+Rp1fZQoaAZHQHIo92xIJ7doB0veaAhHQJTlP2kBS1p1fZQoaAZHQHDMn/o7muFoB0vsaAhHQJTlZvOyE+R1fZQoaAZHQHHATkuHvc9oB00WAWgIR0CU5WmjCYTkdX2UKGgGR0BzK1/ZuhsZaAdL9mgIR0CU5fRZU1htdX2UKGgGR0BzqZb7j1f3aAdL+GgIR0CU5hEORT0hdX2UKGgGR0BxNN0knkT6aAdNBgFoCEdAlOkp8jRlYnV9lChoBkdAcoQVLBbfQGgHTQUBaAhHQJTpItBfKIV1fZQoaAZHQHAhIKUmlZZoB00KAWgIR0CU6hjSG8EndX2UKGgGR0By/Zn8KohqaAdNHAFoCEdAlOppJ04io3V9lChoBkdAcssf5k9U0mgHTQABaAhHQJTqp1hb4ah1fZQoaAZHQHFUMIVuaWpoB00LAWgIR0CU6t0zCUHIdX2UKGgGR0Bw4+Fdszl+aAdL8WgIR0CU6wxcE/0NdX2UKGgGR0B0LE2S+xnnaAdL42gIR0CU62IH1OCYdX2UKGgGR0BxyB5IH1OCaAdL5mgIR0CU7DVWCEpRdX2UKGgGR0BxsqE+PikwaAdL+2gIR0CU7F5Xlr/LdX2UKGgGR0Bv4uW0JF9baAdL/mgIR0CU7OyMkyDadX2UKGgGR0BxTwlsxfv4aAdL+WgIR0CU7TSn+AEudX2UKGgGR0BR8Ee+23KCaAdN6ANoCEdAlO1lBppN9HV9lChoBkdAcWF2xIJ7cGgHTQIBaAhHQJTthXp4bCJ1fZQoaAZHQHD0oc/+sHVoB0vaaAhHQJTvcQK8cuJ1fZQoaAZHQG/tFCswL3NoB0vdaAhHQJTvkHv+fiB1fZQoaAZHQHOPJGKAJ9loB01rAWgIR0CU79J79hqkdX2UKGgGR0Bx5KzE74i5aAdL2WgIR0CU8XJd0JWvdX2UKGgGR0Bu34EjgQ6IaAdL72gIR0CU8YF9roGIdX2UKGgGR0Bwm3kwN9YwaAdL6WgIR0CU8ZbWEsasdX2UKGgGR0BxfmumrKeTaAdL6mgIR0CU8egIyCWedX2UKGgGR0BwSkjJMg2ZaAdNCQFoCEdAlPI9YKYzBXV9lChoBkdAbcvo/RmbsmgHS/hoCEdAlPNC0F8ohXV9lChoBkdAcanaFVT722gHS7hoCEdAlPNqdxyXD3V9lChoBkdAc1zuK4x1xWgHS/ZoCEdAlPQ4fjjrA3V9lChoBkdAZoD/nW8RMGgHTe4BaAhHQJT0V57gKnh1fZQoaAZHQHLiXgDRtxdoB0vkaAhHQJT0cM/hVEN1fZQoaAZHQHKOihJyyUtoB00NAWgIR0CU9SSWqtHQdX2UKGgGR0BygfSMLncMaAdL8WgIR0CU9Yh/RVp9dX2UKGgGR0BzVTU2DQJHaAdNFAFoCEdAlPZHQID5kHV9lChoBkdAcwMxvegte2gHS8toCEdAlPa+y/sVtXV9lChoBkdAcIzu/UONHmgHS+FoCEdAlPdff8/D+HV9lChoBkdAb+JZg5R0l2gHS9NoCEdAlPlJeJHiFXV9lChoBkdAcZnejEehf2gHS9hoCEdAlPlpgb6xgXV9lChoBkdAcsMLOiWVvGgHTRQBaAhHQJT50Mtsen11fZQoaAZHQHBrNCzC1qpoB0v6aAhHQJT6tWdVea91fZQoaAZHQHE5oAXEZR9oB0v1aAhHQJT68CJXQt11fZQoaAZHQHDNq0MPSUloB0vSaAhHQJT7AoKD0191fZQoaAZHQHAUJ+H8CPpoB00PAWgIR0CU/FvF3pwCdX2UKGgGR0ByIL8ZUDMeaAdL82gIR0CVEVnKW9lFdX2UKGgGR0BxZuerdWQwaAdL7WgIR0CVEV052hZhdX2UKGgGR0BvX10xM36zaAdNEgFoCEdAlRGUse4kNXV9lChoBkdAcVDz/IbOvGgHS+hoCEdAlRHugctGu3V9lChoBkdAcNuQla8pTmgHS/RoCEdAlRLGgJ1JUnV9lChoBkdAccS1RceKbmgHTR4BaAhHQJUS6uwHJLd1fZQoaAZHQHDgjuBtk4FoB0vwaAhHQJUT/LX+VC51fZQoaAZHQGz9S9/SYw9oB00SAWgIR0CVFMj94u9OdX2UKGgGR0Bv7xYPoV2zaAdL5mgIR0CVFuCYkVvddX2UKGgGR0Bxcp9v0h/zaAdL82gIR0CVFwSeyzHCdX2UKGgGR0By+O1gH/tIaAdNLQFoCEdAlRcsqz7di3V9lChoBkdAcrrViF0xM2gHS+5oCEdAlRoTye7L+3V9lChoBkdAcsNljVhCt2gHTUEBaAhHQJUagCZF5Od1fZQoaAZHQHEd1Aqur6toB00pAWgIR0CVG1tkFwDOdX2UKGgGR0BxiIN+b3GoaAdNOAFoCEdAlRvavFFUhnV9lChoBkdAcgmDOkcjq2gHTTMBaAhHQJUb9uMuOCJ1fZQoaAZHQHLyclHBk7RoB00AAWgIR0CVHFrC3w1BdX2UKGgGR0BxW9yHVPN3aAdNGQFoCEdAlR0yOearm3V9lChoBkdAc2l5bhWHUWgHTQIBaAhHQJUeCx6fJ3h1fZQoaAZHQHClJgCwKShoB00GAWgIR0CVHmZ8KG+LdX2UKGgGR0BstLIeYD1XaAdNNgFoCEdAlR57DVH4GnV9lChoBkdAbptFNtZV42gHTRIBaAhHQJUg/XOGCZp1fZQoaAZHQHMgOFUQ041oB013AWgIR0CVIg0YCQtBdX2UKGgGR0Bw8nkxREWqaAdNAwFoCEdAlSKdZ/0/W3V9lChoBkdAcgppeu3c6GgHTQUBaAhHQJUjAl5WzWx1fZQoaAZHQHMn54W1twdoB0vlaAhHQJUk4qe9SMt1fZQoaAZHQHM9/FirksBoB01AAWgIR0CVKFUvf0mMdX2UKGgGR0BtYdb3XZoPaAdNAQFoCEdAlShsTBZZCHV9lChoBkdAccx2kzoECGgHTdkBaAhHQJUoyGM4tHx1fZQoaAZHQHBcA7YChexoB02UAWgIR0CVKQ4Fiay9dX2UKGgGR0ByX3lXA/LUaAdNBAFoCEdAlSlOzlcQiHV9lChoBkdAcMUcvugHvGgHTUUBaAhHQJUp5+MIeHV1fZQoaAZHQHI43JcPe55oB01fAWgIR0CVKn0b961LdX2UKGgGR0BxVbv6TGHYaAdL12gIR0CVKv+LWI43dX2UKGgGR0Bvr4oy9EkTaAdNOAFoCEdAlSt9zS1E3XV9lChoBkdAcOYoAGSpzmgHTVUBaAhHQJUsYUHpr1x1fZQoaAZHQHCTvjsD4g1oB03SAWgIR0CVLtU7Sy+pdX2UKGgGR0BxYtIwudwvaAdNZAFoCEdAlS8NEkSmInV9lChoBkdAcfVrz5GjK2gHTdABaAhHQJUvGA8Swnp1fZQoaAZHQHKSjNMXaaloB00iAWgIR0CVL5Lsa86FdX2UKGgGR0Bvpa86FM7EaAdNWwFoCEdAlTAc5S3sonV9lChoBkdAccLs6q8142gHS9xoCEdAlTB7RfF72XV9lChoBkdAcF1y7f51vGgHS/RoCEdAlTC1wgkkbHV9lChoBkdAcTKvb48EFGgHTQgBaAhHQJUxMi3XqaB1fZQoaAZHQHPm7bpNbkhoB00JAWgIR0CVMeDOTq0MdX2UKGgGR0BxF/hegL7XaAdNtAFoCEdAlTJZSm65G3V9lChoBkdAcaMQ176YV2gHTQcBaAhHQJUyuoUBXCF1fZQoaAZHQG9N9uxbB45oB0v5aAhHQJUz8dq+Jxh1fZQoaAZHQHKJGw/xDstoB01mAWgIR0CVNCuGsV+JdX2UKGgGR0Byyh2W6bvxaAdNUwFoCEdAlTR42Kl54XV9lChoBkdAbp66FuejEmgHTTYBaAhHQJU0j0SRKYl1fZQoaAZHQHByHw9aEBdoB0vlaAhHQJU2Hundfsx1fZQoaAZHQHEPPXK8tf5oB0v+aAhHQJU2VIOH3111ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}