Rerun first training run on increased dataset
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [yhavinga/ul2-large-dutch](https://huggingface.co/yhavinga/ul2-large-dutch) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- Top-5-accuracy:
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -36,56 +36,76 @@ More information needed
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
-
- learning_rate: 0.
|
40 |
- train_batch_size: 16
|
41 |
- eval_batch_size: 16
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
-
- num_epochs:
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
-
| Training Loss | Epoch | Step
|
50 |
-
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [yhavinga/ul2-large-dutch](https://huggingface.co/yhavinga/ul2-large-dutch) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 5.2081
|
20 |
+
- Top-5-accuracy: 0.0
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.001
|
40 |
- train_batch_size: 16
|
41 |
- eval_batch_size: 16
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 1
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Top-5-accuracy |
|
50 |
+
|:-------------:|:------:|:-----:|:---------------:|:--------------:|
|
51 |
+
| 8.6533 | 0.0170 | 200 | 5.8825 | 0.0 |
|
52 |
+
| 8.5044 | 0.0339 | 400 | 5.8463 | 0.0 |
|
53 |
+
| 8.3692 | 0.0509 | 600 | 5.7566 | 0.0 |
|
54 |
+
| 8.3791 | 0.0678 | 800 | 5.7155 | 0.0 |
|
55 |
+
| 8.4643 | 0.0848 | 1000 | 5.6913 | 0.0 |
|
56 |
+
| 8.3406 | 0.1017 | 1200 | 5.6508 | 0.0 |
|
57 |
+
| 8.2752 | 0.1187 | 1400 | 5.6089 | 0.0 |
|
58 |
+
| 8.2495 | 0.1357 | 1600 | 5.5855 | 0.0 |
|
59 |
+
| 8.1244 | 0.1526 | 1800 | 5.5783 | 0.0 |
|
60 |
+
| 7.8897 | 0.1696 | 2000 | 5.5554 | 0.0 |
|
61 |
+
| 8.2289 | 0.1865 | 2200 | 5.5600 | 0.0 |
|
62 |
+
| 7.9151 | 0.2035 | 2400 | 5.5427 | 0.0 |
|
63 |
+
| 7.9956 | 0.2205 | 2600 | 5.5188 | 0.0 |
|
64 |
+
| 8.0472 | 0.2374 | 2800 | 5.4894 | 0.0 |
|
65 |
+
| 8.0208 | 0.2544 | 3000 | 5.4734 | 0.0 |
|
66 |
+
| 8.2228 | 0.2713 | 3200 | 5.4615 | 0.0 |
|
67 |
+
| 8.0756 | 0.2883 | 3400 | 5.4534 | 0.0 |
|
68 |
+
| 7.8076 | 0.3052 | 3600 | 5.4456 | 0.0 |
|
69 |
+
| 7.8418 | 0.3222 | 3800 | 5.4461 | 0.0 |
|
70 |
+
| 7.7266 | 0.3392 | 4000 | 5.4373 | 0.0 |
|
71 |
+
| 8.0607 | 0.3561 | 4200 | 5.4281 | 0.0 |
|
72 |
+
| 7.7716 | 0.3731 | 4400 | 5.4081 | 0.0 |
|
73 |
+
| 7.9324 | 0.3900 | 4600 | 5.3989 | 0.0 |
|
74 |
+
| 7.9461 | 0.4070 | 4800 | 5.3803 | 0.0 |
|
75 |
+
| 7.8788 | 0.4239 | 5000 | 5.3734 | 0.0 |
|
76 |
+
| 7.8748 | 0.4409 | 5200 | 5.3667 | 0.0 |
|
77 |
+
| 7.8891 | 0.4579 | 5400 | 5.3629 | 0.0 |
|
78 |
+
| 7.9697 | 0.4748 | 5600 | 5.3624 | 0.0 |
|
79 |
+
| 7.8402 | 0.4918 | 5800 | 5.3463 | 0.0 |
|
80 |
+
| 7.8671 | 0.5087 | 6000 | 5.3332 | 0.0 |
|
81 |
+
| 7.6464 | 0.5257 | 6200 | 5.3190 | 0.0 |
|
82 |
+
| 7.7773 | 0.5426 | 6400 | 5.3144 | 0.0 |
|
83 |
+
| 7.723 | 0.5596 | 6600 | 5.3052 | 0.0 |
|
84 |
+
| 7.8489 | 0.5766 | 6800 | 5.2988 | 0.0 |
|
85 |
+
| 7.7925 | 0.5935 | 7000 | 5.2946 | 0.0 |
|
86 |
+
| 7.8374 | 0.6105 | 7200 | 5.2924 | 0.0 |
|
87 |
+
| 7.4971 | 0.6274 | 7400 | 5.2914 | 0.0 |
|
88 |
+
| 7.6408 | 0.6444 | 7600 | 5.2859 | 0.0 |
|
89 |
+
| 7.7993 | 0.6614 | 7800 | 5.2770 | 0.0 |
|
90 |
+
| 7.5283 | 0.6783 | 8000 | 5.2680 | 0.0 |
|
91 |
+
| 7.4715 | 0.6953 | 8200 | 5.2637 | 0.0 |
|
92 |
+
| 7.4699 | 0.7122 | 8400 | 5.2624 | 0.0 |
|
93 |
+
| 7.6275 | 0.7292 | 8600 | 5.2571 | 0.0 |
|
94 |
+
| 7.4884 | 0.7461 | 8800 | 5.2509 | 0.0 |
|
95 |
+
| 7.47 | 0.7631 | 9000 | 5.2448 | 0.0 |
|
96 |
+
| 7.5765 | 0.7801 | 9200 | 5.2324 | 0.0 |
|
97 |
+
| 7.6802 | 0.7970 | 9400 | 5.2331 | 0.0 |
|
98 |
+
| 7.4827 | 0.8140 | 9600 | 5.2346 | 0.0 |
|
99 |
+
| 7.4127 | 0.8309 | 9800 | 5.2346 | 0.0 |
|
100 |
+
| 7.5217 | 0.8479 | 10000 | 5.2248 | 0.0 |
|
101 |
+
| 7.4794 | 0.8648 | 10200 | 5.2201 | 0.0 |
|
102 |
+
| 7.4414 | 0.8818 | 10400 | 5.2179 | 0.0 |
|
103 |
+
| 7.5095 | 0.8988 | 10600 | 5.2104 | 0.0 |
|
104 |
+
| 7.4934 | 0.9157 | 10800 | 5.2084 | 0.0 |
|
105 |
+
| 7.3595 | 0.9327 | 11000 | 5.2098 | 0.0 |
|
106 |
+
| 7.6305 | 0.9496 | 11200 | 5.2097 | 0.0 |
|
107 |
+
| 7.5846 | 0.9666 | 11400 | 5.2084 | 0.0 |
|
108 |
+
| 7.4536 | 0.9836 | 11600 | 5.2081 | 0.0 |
|
109 |
|
110 |
|
111 |
### Framework versions
|