Second training rerun on increased dataset
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [yhavinga/ul2-large-dutch](https://huggingface.co/yhavinga/ul2-large-dutch) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 3.
|
20 |
-
- Top-5-accuracy: 4.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -36,7 +36,7 @@ More information needed
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
-
- learning_rate: 0.
|
40 |
- train_batch_size: 16
|
41 |
- eval_batch_size: 16
|
42 |
- seed: 42
|
@@ -49,76 +49,76 @@ The following hyperparameters were used during training:
|
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Top-5-accuracy |
|
51 |
|:-------------:|:------:|:-----:|:---------------:|:--------------:|
|
52 |
-
| 6.
|
53 |
-
| 6.
|
54 |
-
| 5.
|
55 |
-
| 5.
|
56 |
-
| 5.
|
57 |
-
| 5.
|
58 |
-
| 5.
|
59 |
-
| 5.
|
60 |
-
| 5.
|
61 |
-
| 5.
|
62 |
-
| 5.
|
63 |
-
| 5.
|
64 |
-
| 5.
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
| 4.
|
70 |
-
| 4.
|
71 |
-
| 4.
|
72 |
-
| 4.
|
73 |
-
| 4.
|
74 |
-
| 4.
|
75 |
-
| 4.
|
76 |
-
| 4.
|
77 |
-
| 4.
|
78 |
-
| 4.
|
79 |
-
| 4.
|
80 |
-
| 4.
|
81 |
-
| 4.
|
82 |
-
| 4.
|
83 |
-
| 4.
|
84 |
-
| 4.
|
85 |
-
| 4.
|
86 |
-
| 4.
|
87 |
-
| 4.
|
88 |
-
| 4.
|
89 |
-
| 4.
|
90 |
-
| 4.
|
91 |
-
| 4.
|
92 |
-
| 4.
|
93 |
-
| 4.
|
94 |
-
| 4.
|
95 |
-
| 4.
|
96 |
-
| 4.
|
97 |
-
| 4.
|
98 |
-
| 4.
|
99 |
-
| 4.
|
100 |
-
| 4.
|
101 |
-
| 4.
|
102 |
-
| 4.
|
103 |
-
| 4.
|
104 |
-
| 4.
|
105 |
-
| 4.
|
106 |
-
| 4.
|
107 |
-
| 4.
|
108 |
-
| 4.
|
109 |
-
| 4.
|
110 |
-
| 4.
|
111 |
-
| 4.
|
112 |
-
| 4.
|
113 |
-
| 4.
|
114 |
-
| 4.
|
115 |
-
| 4.
|
116 |
-
| 4.
|
117 |
-
| 4.
|
118 |
-
| 4.
|
119 |
-
| 4.
|
120 |
-
| 4.
|
121 |
-
| 4.
|
122 |
|
123 |
|
124 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [yhavinga/ul2-large-dutch](https://huggingface.co/yhavinga/ul2-large-dutch) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.8688
|
20 |
+
- Top-5-accuracy: 4.1194
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.6
|
40 |
- train_batch_size: 16
|
41 |
- eval_batch_size: 16
|
42 |
- seed: 42
|
|
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Top-5-accuracy |
|
51 |
|:-------------:|:------:|:-----:|:---------------:|:--------------:|
|
52 |
+
| 6.4431 | 0.0424 | 500 | 4.7239 | 0.0796 |
|
53 |
+
| 6.4068 | 0.0848 | 1000 | 5.1338 | 0.0398 |
|
54 |
+
| 5.7971 | 0.1272 | 1500 | 4.6127 | 0.0199 |
|
55 |
+
| 5.452 | 0.1696 | 2000 | 4.5181 | 0.1194 |
|
56 |
+
| 5.3971 | 0.2120 | 2500 | 4.5498 | 0.1393 |
|
57 |
+
| 5.2693 | 0.2544 | 3000 | 4.3622 | 0.1393 |
|
58 |
+
| 5.2788 | 0.2968 | 3500 | 4.3456 | 0.1990 |
|
59 |
+
| 5.2129 | 0.3392 | 4000 | 4.3400 | 0.2388 |
|
60 |
+
| 5.133 | 0.3815 | 4500 | 4.3021 | 0.2786 |
|
61 |
+
| 5.0346 | 0.4239 | 5000 | 4.2458 | 0.9751 |
|
62 |
+
| 5.113 | 0.4663 | 5500 | 4.2746 | 0.7363 |
|
63 |
+
| 5.1276 | 0.5087 | 6000 | 4.2369 | 0.9552 |
|
64 |
+
| 5.0586 | 0.5511 | 6500 | 4.1962 | 1.8706 |
|
65 |
+
| 4.9369 | 0.5935 | 7000 | 4.1843 | 2.9254 |
|
66 |
+
| 4.9152 | 0.6359 | 7500 | 4.1641 | 3.0846 |
|
67 |
+
| 4.9369 | 0.6783 | 8000 | 4.1089 | 3.7413 |
|
68 |
+
| 4.9185 | 0.7207 | 8500 | 4.1150 | 3.6418 |
|
69 |
+
| 4.8469 | 0.7631 | 9000 | 4.0996 | 3.6418 |
|
70 |
+
| 4.8854 | 0.8055 | 9500 | 4.0817 | 3.5821 |
|
71 |
+
| 4.8362 | 0.8479 | 10000 | 4.0456 | 4.2587 |
|
72 |
+
| 4.7867 | 0.8903 | 10500 | 4.0699 | 3.9204 |
|
73 |
+
| 4.7926 | 0.9327 | 11000 | 4.0692 | 3.3831 |
|
74 |
+
| 4.7933 | 0.9751 | 11500 | 4.0356 | 3.1642 |
|
75 |
+
| 4.793 | 1.0175 | 12000 | 4.0607 | 2.6667 |
|
76 |
+
| 4.7664 | 1.0599 | 12500 | 4.0430 | 3.5622 |
|
77 |
+
| 4.7409 | 1.1023 | 13000 | 4.0239 | 3.8806 |
|
78 |
+
| 4.7558 | 1.1446 | 13500 | 4.0134 | 3.7413 |
|
79 |
+
| 4.7642 | 1.1870 | 14000 | 3.9884 | 3.9403 |
|
80 |
+
| 4.7298 | 1.2294 | 14500 | 4.0087 | 3.6219 |
|
81 |
+
| 4.7433 | 1.2718 | 15000 | 3.9809 | 4.0995 |
|
82 |
+
| 4.6858 | 1.3142 | 15500 | 3.9984 | 4.2985 |
|
83 |
+
| 4.7023 | 1.3566 | 16000 | 3.9655 | 4.0199 |
|
84 |
+
| 4.6963 | 1.3990 | 16500 | 3.9798 | 4.1791 |
|
85 |
+
| 4.7239 | 1.4414 | 17000 | 4.0001 | 4.0597 |
|
86 |
+
| 4.7312 | 1.4838 | 17500 | 3.9532 | 4.0796 |
|
87 |
+
| 4.6408 | 1.5262 | 18000 | 3.9487 | 4.2388 |
|
88 |
+
| 4.669 | 1.5686 | 18500 | 3.9303 | 4.1990 |
|
89 |
+
| 4.6589 | 1.6110 | 19000 | 3.9346 | 4.1393 |
|
90 |
+
| 4.6887 | 1.6534 | 19500 | 3.9563 | 3.9403 |
|
91 |
+
| 4.5856 | 1.6958 | 20000 | 3.9374 | 4.2786 |
|
92 |
+
| 4.6744 | 1.7382 | 20500 | 3.9157 | 4.0995 |
|
93 |
+
| 4.6395 | 1.7806 | 21000 | 3.9279 | 4.1393 |
|
94 |
+
| 4.6191 | 1.8230 | 21500 | 3.9259 | 3.8408 |
|
95 |
+
| 4.6256 | 1.8654 | 22000 | 3.9215 | 3.9005 |
|
96 |
+
| 4.5945 | 1.9077 | 22500 | 3.9214 | 4.0796 |
|
97 |
+
| 4.6325 | 1.9501 | 23000 | 3.9076 | 3.8607 |
|
98 |
+
| 4.6476 | 1.9925 | 23500 | 3.8955 | 4.0199 |
|
99 |
+
| 4.6362 | 2.0349 | 24000 | 3.8923 | 4.0398 |
|
100 |
+
| 4.5991 | 2.0773 | 24500 | 3.8923 | 4.3383 |
|
101 |
+
| 4.6189 | 2.1197 | 25000 | 3.8800 | 4.0 |
|
102 |
+
| 4.5933 | 2.1621 | 25500 | 3.8869 | 3.8806 |
|
103 |
+
| 4.6165 | 2.2045 | 26000 | 3.8918 | 4.0398 |
|
104 |
+
| 4.5998 | 2.2469 | 26500 | 3.8819 | 3.9602 |
|
105 |
+
| 4.5827 | 2.2893 | 27000 | 3.8848 | 3.9204 |
|
106 |
+
| 4.528 | 2.3317 | 27500 | 3.8847 | 3.9005 |
|
107 |
+
| 4.5685 | 2.3741 | 28000 | 3.8879 | 3.9204 |
|
108 |
+
| 4.5698 | 2.4165 | 28500 | 3.8739 | 3.9801 |
|
109 |
+
| 4.5472 | 2.4589 | 29000 | 3.8761 | 4.0398 |
|
110 |
+
| 4.5605 | 2.5013 | 29500 | 3.8753 | 4.0398 |
|
111 |
+
| 4.5329 | 2.5437 | 30000 | 3.8791 | 4.0796 |
|
112 |
+
| 4.5687 | 2.5861 | 30500 | 3.8698 | 4.0 |
|
113 |
+
| 4.5716 | 2.6285 | 31000 | 3.8659 | 4.0995 |
|
114 |
+
| 4.547 | 2.6708 | 31500 | 3.8713 | 4.0597 |
|
115 |
+
| 4.6466 | 2.7132 | 32000 | 3.8729 | 4.0995 |
|
116 |
+
| 4.5963 | 2.7556 | 32500 | 3.8698 | 4.1194 |
|
117 |
+
| 4.629 | 2.7980 | 33000 | 3.8703 | 4.1194 |
|
118 |
+
| 4.5859 | 2.8404 | 33500 | 3.8699 | 4.1194 |
|
119 |
+
| 4.6239 | 2.8828 | 34000 | 3.8688 | 4.1393 |
|
120 |
+
| 4.5052 | 2.9252 | 34500 | 3.8688 | 4.1393 |
|
121 |
+
| 4.5933 | 2.9676 | 35000 | 3.8688 | 4.1194 |
|
122 |
|
123 |
|
124 |
### Framework versions
|