Upload PPO LunarLander-v2 trained agent with 1mln
Browse files- README.md +1 -1
- config.json +1 -1
- lunar_demo.zip +2 -2
- lunar_demo/data +19 -19
- lunar_demo/policy.optimizer.pth +1 -1
- lunar_demo/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 266.69 +/- 23.44
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35f8134d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35f8134dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35f8134e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35f8134ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f35f8134f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f35f813a050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35f813a0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f35f813a170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35f813a200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35f813a290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35f813a320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f35f8177c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652166340.2794888, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMQcD5/348/qiy7Psv16L6wfWs+fczOPAAAAAAAAAAAQxNOvmHmgjviHcW5VekYN9lIMr19SOo4AACAPwAAgD8ADZo8cS0ZuQCeiLrHVUS2Xv6IuazWuDUAAIA/AACAP2b3Ub32zGO62yeWt+8GM7JiuvS5BvqrNgAAgD8AAIA/zeKEPY+SRLrmHdc6mj14NniMuDs7Yvi5AACAPwAAgD9zssq94fClurLE9DmSJhs1xw0VuiTgBzQAAIA/AACAP6ZMqb37D7o///4zvySVIz16EYW7QPhMvgAAAAAAAAAANTIVv1M8ab6la228oK68PH44AD44io67AACAPwAAgD/NUtc9pDArOK7DartH/oS2FKclPL5BADYAAIA/AACAP7O9Jb3hDIS6ETa6O1cC9DfchDu76gtpNgAAgD8AAIA/M1tlvdhfpj4P4IM90F8xvsaGdD0ycAA9AAAAAAAAAAAzgYQ8KTgSuogiwzrNzoM1c5PXub7A3bkAAIA/AACAP83Majuulb26ExVVOksPcbZiIXy5WgByuQAAgD8AAIA/YD4gPjEFpz7yD/m8/UI/voBrt7zmcbk2AAAAAAAAAADduXS+bFj3PMLay7oklps5qa2Ivg8CFToAAIA/AACAP/Nwbz6kT2A8gzXXuqR9Crm+GPg98EYCOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKpFEL6NBYUCUhpRSlIwBbJRN6AOMAXSUR0CKZr+0gKWtdX2UKGgGaAloD0MISYEFMGXkXkCUhpRSlGgVTegDaBZHQIpnfh4t6HF1fZQoaAZoCWgPQwgx0/avrBpeQJSGlFKUaBVN6ANoFkdAimjZh8Yyf3V9lChoBmgJaA9DCL9/8+LEOF5AlIaUUpRoFU3oA2gWR0CKcHUG3WnTdX2UKGgGaAloD0MISMK+ncTUYECUhpRSlGgVTegDaBZHQIqIfctXgcd1fZQoaAZoCWgPQwjbNLbXgr4gQJSGlFKUaBVL+WgWR0CKl6sKb8WLdX2UKGgGaAloD0MIy2Wjc/5qYkCUhpRSlGgVTegDaBZHQIqrPNzKcNJ1fZQoaAZoCWgPQwh8Q+Gz9eBgQJSGlFKUaBVN6ANoFkdAiq6FzdUKiXV9lChoBmgJaA9DCFqfckwWmllAlIaUUpRoFU3oA2gWR0CKsz2TPjXGdX2UKGgGaAloD0MIwqIiTidXYECUhpRSlGgVTegDaBZHQIrFmsJY1YR1fZQoaAZoCWgPQwjPSIRGMPpjQJSGlFKUaBVN6ANoFkdAiskDNpudgHV9lChoBmgJaA9DCH/3jhoT9V5AlIaUUpRoFU3oA2gWR0CKyqC1Z1V6dX2UKGgGaAloD0MIO4xJfy+cYECUhpRSlGgVTegDaBZHQIrZs/nnuAt1fZQoaAZoCWgPQwg25nXEIYJdQJSGlFKUaBVN6ANoFkdAiunCLuQZGnV9lChoBmgJaA9DCMn/5O/eN1xAlIaUUpRoFU3oA2gWR0CK9dO+IuXedX2UKGgGaAloD0MInE6y1eUOXUCUhpRSlGgVTegDaBZHQIr/ELUkOZt1fZQoaAZoCWgPQwjdtu9R/xtlQJSGlFKUaBVN6ANoFkdAiwXXV09yLnV9lChoBmgJaA9DCNNnB1xXLmJAlIaUUpRoFU3oA2gWR0CLBqYE4ecQdX2UKGgGaAloD0MIEMr7OBqRYECUhpRSlGgVTegDaBZHQIsHW9eyAx11fZQoaAZoCWgPQwh8taM4RxBgQJSGlFKUaBVN6ANoFkdAiwitwiqyW3V9lChoBmgJaA9DCD5eSIcHTWJAlIaUUpRoFU3oA2gWR0CLJ30voNd7dX2UKGgGaAloD0MIm6vmOaL5ZECUhpRSlGgVTegDaBZHQIs2Yf+0gKZ1fZQoaAZoCWgPQwhGelG7X65gQJSGlFKUaBVN6ANoFkdAi0h7ah6By3V9lChoBmgJaA9DCCMT8GskJF1AlIaUUpRoFU3oA2gWR0CLS32VVxS6dX2UKGgGaAloD0MIcm4T7pUEYkCUhpRSlGgVTegDaBZHQItQF9v0h/11fZQoaAZoCWgPQwh5sTBEzoBiQJSGlFKUaBVN6ANoFkdAi2GgpSaVlnV9lChoBmgJaA9DCNXKhF/q5F5AlIaUUpRoFU3oA2gWR0CLZNa0QbuMdX2UKGgGaAloD0MI68cm+RF8YECUhpRSlGgVTegDaBZHQItmYi5d4V11fZQoaAZoCWgPQwh7vJAOD3taQJSGlFKUaBVN6ANoFkdAi3TaJIlMRHV9lChoBmgJaA9DCKadmssN22FAlIaUUpRoFU3oA2gWR0CMkNgk1MufdX2UKGgGaAloD0MI61Ij9DOVJkCUhpRSlGgVTQ0BaBZHQIyWwTIvJzV1fZQoaAZoCWgPQwi4V+atun1ZQJSGlFKUaBVN6ANoFkdAjJwod+5OJ3V9lChoBmgJaA9DCIicvp6vuVJAlIaUUpRoFU3oA2gWR0CMpNRm9QGfdX2UKGgGaAloD0MImpZYGY2CXECUhpRSlGgVTegDaBZHQIyrKBPKuCB1fZQoaAZoCWgPQwhqh78m659gQJSGlFKUaBVN6ANoFkdAjKv544ZMtnV9lChoBmgJaA9DCBuDTgid+mJAlIaUUpRoFU3oA2gWR0CMrJ9LpRoAdX2UKGgGaAloD0MIByl4Crl1XUCUhpRSlGgVTegDaBZHQIyt1ShrWRR1fZQoaAZoCWgPQwgUsB2M2CfQv5SGlFKUaBVL7mgWR0CMvAhA4XGfdX2UKGgGaAloD0MI96xrtJySYECUhpRSlGgVTegDaBZHQIzJ47q6e5F1fZQoaAZoCWgPQwhlAKjiRo5jQJSGlFKUaBVN6ANoFkdAjNdz0pVjqnV9lChoBmgJaA9DCAIOoUrNtGdAlIaUUpRoFU0OA2gWR0CM4eDFId2gdX2UKGgGaAloD0MIbJbLRmcPYECUhpRSlGgVTegDaBZHQIznnarWAgB1fZQoaAZoCWgPQwgFMjuL3o9iQJSGlFKUaBVN6ANoFkdAjOoxRuTA33V9lChoBmgJaA9DCClauReYTGRAlIaUUpRoFU3oA2gWR0CM7d7qIJqqdX2UKGgGaAloD0MIMj7MXjZFZECUhpRSlGgVTWQCaBZHQIz5o7Pppvh1fZQoaAZoCWgPQwiRJt4BntNbQJSGlFKUaBVN6ANoFkdAjQDkXDWK/HV9lChoBmgJaA9DCAzlRLsKPWJAlIaUUpRoFU3oA2gWR0CNDrJfYzzmdX2UKGgGaAloD0MIVWe1wB6eW0CUhpRSlGgVTegDaBZHQI0dZw84gih1fZQoaAZoCWgPQwiWXpuNlbhbQJSGlFKUaBVN6ANoFkdAjSMwBo24u3V9lChoBmgJaA9DCPHVjuKcBmBAlIaUUpRoFU3oA2gWR0CNN8/X5FgEdX2UKGgGaAloD0MIM+AsJUsdYkCUhpRSlGgVTegDaBZHQI04jAN5MUR1fZQoaAZoCWgPQwiDFhIwOjdjQJSGlFKUaBVN6ANoFkdAjTk98JD3NHV9lChoBmgJaA9DCEoJwap622NAlIaUUpRoFU3oA2gWR0CNOowQlKK6dX2UKGgGaAloD0MIZmt9kdAYXUCUhpRSlGgVTegDaBZHQI1JWz0HyEt1fZQoaAZoCWgPQwhwCisVVEBhQJSGlFKUaBVNFwNoFkdAjVAY3FUADXV9lChoBmgJaA9DCCDSb18Hb2FAlIaUUpRoFU3oA2gWR0CNVrSThYNidX2UKGgGaAloD0MIc2cmGM6fYUCUhpRSlGgVTegDaBZHQI1ig0fozN51fZQoaAZoCWgPQwgbLQd6qMdjQJSGlFKUaBVN6ANoFkdAjXFuTJQtSXV9lChoBmgJaA9DCML8FTJXtVFAlIaUUpRoFU3oA2gWR0CNdBvrGBFvdX2UKGgGaAloD0MId2ouNxgNWUCUhpRSlGgVTegDaBZHQI14C+N96Tp1fZQoaAZoCWgPQwjQKcjPRq9iQJSGlFKUaBVN6ANoFkdAjYSyBbwBo3V9lChoBmgJaA9DCD6XqUnwjmFAlIaUUpRoFU3oA2gWR0CNjMUM5OrRdX2UKGgGaAloD0MIoGzKFd5hVkCUhpRSlGgVTegDaBZHQI2chIJ7b+N1fZQoaAZoCWgPQwiFevoI/MBgQJSGlFKUaBVN6ANoFkdAjaz0eU6gd3V9lChoBmgJaA9DCDT3kPC9019AlIaUUpRoFU3oA2gWR0COxEx0uDjBdX2UKGgGaAloD0MIluzYCMQiaECUhpRSlGgVTU4CaBZHQI7NUJSiudR1fZQoaAZoCWgPQwjAl8KD5jNvQJSGlFKUaBVNOQFoFkdAjtBPrfLs8nV9lChoBmgJaA9DCE890uC2S1JAlIaUUpRoFU3oA2gWR0CO2io86mwadX2UKGgGaAloD0MIKnCyDVy+YkCUhpRSlGgVTegDaBZHQI7a8SK3uu11fZQoaAZoCWgPQwgArmTHRsBgQJSGlFKUaBVN6ANoFkdAjtumJvYOD3V9lChoBmgJaA9DCJ5i1SBMoWBAlIaUUpRoFU3oA2gWR0CO3PicXm/4dX2UKGgGaAloD0MIZ5jaUgcIXkCUhpRSlGgVTT4CaBZHQI7dcep4rz51fZQoaAZoCWgPQwhv8fCeA9tdQJSGlFKUaBVN6ANoFkdAjupHVG0/nnV9lChoBmgJaA9DCEs+dhcoWl9AlIaUUpRoFU3oA2gWR0CO8HUZvUBodX2UKGgGaAloD0MILV+X4T89QUCUhpRSlGgVTQcBaBZHQI7yJ3iaRZF1fZQoaAZoCWgPQwjxhF5/EuZgQJSGlFKUaBVN6ANoFkdAjva3UQTVUnV9lChoBmgJaA9DCHS0qiUdp2NAlIaUUpRoFU3oA2gWR0CPEjOMVDa5dX2UKGgGaAloD0MI+Db92Y/NXECUhpRSlGgVTegDaBZHQI8ZdVrAP/d1fZQoaAZoCWgPQwhhGoaPCA5iQJSGlFKUaBVN6ANoFkdAjydcZtNzsHV9lChoBmgJaA9DCK1p3nGKz2JAlIaUUpRoFU3oA2gWR0CPP2PPLPlddX2UKGgGaAloD0MImdamsb1pbkCUhpRSlGgVTR8DaBZHQI9M6RKYiPh1fZQoaAZoCWgPQwi3Xz5Zse9gQJSGlFKUaBVN6ANoFkdAj0603Ov+wXV9lChoBmgJaA9DCP5kjA8zGWZAlIaUUpRoFU3oA2gWR0CPVDN6gM+edX2UKGgGaAloD0MIs193unOzYUCUhpRSlGgVTegDaBZHQI9cQOe8PFx1fZQoaAZoCWgPQwjgu80bJ4ZkQJSGlFKUaBVN6ANoFkdAj2hC04R283V9lChoBmgJaA9DCJIjnYERF2BAlIaUUpRoFU3oA2gWR0CPaPrgwXZXdX2UKGgGaAloD0MInznrU46HX0CUhpRSlGgVTegDaBZHQI9rAxesxPB1fZQoaAZoCWgPQwjEWnwKgBRTQJSGlFKUaBVN6ANoFkdAj2uAmiQDFXV9lChoBmgJaA9DCHYb1H5rt2JAlIaUUpRoFU3oA2gWR0CPeO5aNdZ8dX2UKGgGaAloD0MIKLUX0XbxXUCUhpRSlGgVTegDaBZHQI9/kdLg4wR1fZQoaAZoCWgPQwiE1sOXiftcQJSGlFKUaBVN6ANoFkdAj4E3lr/KhnV9lChoBmgJaA9DCIvFbwqrgGFAlIaUUpRoFU3oA2gWR0CPhaIC2c8UdX2UKGgGaAloD0MI2pJVEW6ASUCUhpRSlGgVS/NoFkdAj4mNMwlByHV9lChoBmgJaA9DCH0geedQAV1AlIaUUpRoFU3oA2gWR0CPoK3R5TqCdX2UKGgGaAloD0MIOzQsRl03X0CUhpRSlGgVTegDaBZHQI+nvOW0JF91fZQoaAZoCWgPQwhAahMn96ldQJSGlFKUaBVN6ANoFkdAj7YwqZtvXXV9lChoBmgJaA9DCNyfi4aM+2VAlIaUUpRoFU1tA2gWR0CPys+t8uzydX2UKGgGaAloD0MIIGKDhZNQYECUhpRSlGgVTegDaBZHQI/Qr+PzWf91fZQoaAZoCWgPQwiI1R9hGC9lQJSGlFKUaBVN6ANoFkdAj+Bji4rjHXV9lChoBmgJaA9DCOKQDaSLwmBAlIaUUpRoFU3oA2gWR0CP5ldu5z5odWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b2043a4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b2043a560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b2043a5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b2043a680>", "_build": "<function ActorCriticPolicy._build at 0x7f0b2043a710>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b2043a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b2043a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b2043a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b2043a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b2043a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b2043aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b20475de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652603037.2690973, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICgd72i1bY/xiW/vqF3Gb442z291qaCvQAAAAAAAAAAMz9sPGcRRj4j+Oi9gmLavoT0Prxqsyu9AAAAAAAAAADN1yA9Tue+P/x8HT5RHzW+Fa0XPetcFT0AAAAAAAAAAEY0ML7ByYC8Aq0Iu/8sOLlD0Oo9knI0OgAAgD8AAIA/TWYjvjdLUT4Ic989HciNvt/vvbzyR1M9AAAAAAAAAACmMYa9kA+NPmdsIj2HmbW+m1RavOt507wAAAAAAAAAAMYTFL7Ibu07zYIhPi5onLz2yoe9YHSQPQAAgD8AAIA/uq+Ivo+SKz9iJAm+8YAOv9OEHb4C31Y9AAAAAAAAAAB6NqS+iZklPQ1mFD7YmQK+GAhnvr1gi74AAIA/AAAAAOAmET64/um5AjtuuWnqH7VUwx87pF+NOAAAgD8AAIA/TSEtPoOLfbzeT+05UXYpuNEq4r0j0Bu5AACAPwAAgD8K3r2+M92mPtqkyT1wG42+k2ilveUwuDwAAAAAAAAAAPqnNr6I4ou8Ms1Ru1z9qLm/A/Y9ahWWOgAAgD8AAIA/U/EdPg+7C7w1ioE7d869ueedfr3HKZ66AACAPwAAgD+t5YC+aEHFvO3ElzseSL45xdIsPtGck7oAAIA/AACAP1qRtr32KFC4ox/Vs2A/2S5FJv67JDeoMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOIdrtYeOcECUhpRSlIwBbJRLpowBdJRHQJe5nCyhSLt1fZQoaAZoCWgPQwhkdavnZCpxQJSGlFKUaBVLvGgWR0CXuep5eJHidX2UKGgGaAloD0MIg4b+CS5KckCUhpRSlGgVS6poFkdAl7nnTd+G5HV9lChoBmgJaA9DCGTL8nVZNXFAlIaUUpRoFUvHaBZHQJe5/fCQ9zR1fZQoaAZoCWgPQwip9ul4zLlkQJSGlFKUaBVN6ANoFkdAl7qH7pFCs3V9lChoBmgJaA9DCGngRzVsvW5AlIaUUpRoFUuhaBZHQJe6pFNL1291fZQoaAZoCWgPQwgbDeAtENtwQJSGlFKUaBVLy2gWR0CXutZxrBTGdX2UKGgGaAloD0MIHeihts0ocECUhpRSlGgVS8loFkdAl7rnE2pAEHV9lChoBmgJaA9DCCNJEK6AAm9AlIaUUpRoFUupaBZHQJe7JUADJU51fZQoaAZoCWgPQwjzxklhXidzQJSGlFKUaBVLuGgWR0CXvB2tMfzSdX2UKGgGaAloD0MIrHE2HYFLcECUhpRSlGgVS75oFkdAl7waSgXdkHV9lChoBmgJaA9DCPc8f9ooU3FAlIaUUpRoFUvQaBZHQJe8OQXAM2F1fZQoaAZoCWgPQwjCa5c2XHBwQJSGlFKUaBVLt2gWR0CXvNAp8WsSdX2UKGgGaAloD0MIWUxsPu5YcUCUhpRSlGgVTbkBaBZHQJe85t0mtyR1fZQoaAZoCWgPQwhWnkDYKXxvQJSGlFKUaBVLxmgWR0CXvXWsRxtIdX2UKGgGaAloD0MIfJi9bDsFb0CUhpRSlGgVS7BoFkdAl737VSXMQnV9lChoBmgJaA9DCHOAYI6ea29AlIaUUpRoFUuyaBZHQJe/Bhb4agp1fZQoaAZoCWgPQwiNz2T/PHJxQJSGlFKUaBVL32gWR0CXvz3azu4PdX2UKGgGaAloD0MI+uyA68ozcUCUhpRSlGgVS+toFkdAl7+BN21Ul3V9lChoBmgJaA9DCPhQoiVPlXFAlIaUUpRoFU0MAWgWR0CXwBZof0VadX2UKGgGaAloD0MIt32P+qsucUCUhpRSlGgVS6poFkdAl8BK20AtF3V9lChoBmgJaA9DCM3mcRjMh29AlIaUUpRoFUvXaBZHQJfAat/4Irx1fZQoaAZoCWgPQwj6uaEpe+xxQJSGlFKUaBVLu2gWR0CXwNmAskIHdX2UKGgGaAloD0MIcyoZAOp7cECUhpRSlGgVTQIBaBZHQJfA7RNRFZx1fZQoaAZoCWgPQwhxOzQsxoVwQJSGlFKUaBVNGwFoFkdAl8FqcAimmHV9lChoBmgJaA9DCGTnbWz2R3JAlIaUUpRoFU0OAWgWR0CXwYGu9vjwdX2UKGgGaAloD0MIC34bYryOb0CUhpRSlGgVS8RoFkdAl8Gq5PM0QHV9lChoBmgJaA9DCPMd/MQBmXFAlIaUUpRoFUvqaBZHQJfB2qaPS2J1fZQoaAZoCWgPQwgeGhajLslvQJSGlFKUaBVLymgWR0CXwnCWNWELdX2UKGgGaAloD0MI5YBdTd6ccUCUhpRSlGgVS+JoFkdAl8JsJtzjm3V9lChoBmgJaA9DCFvri4T2WXFAlIaUUpRoFUu7aBZHQJfCnN5dGAl1fZQoaAZoCWgPQwi8BKc+UH1xQJSGlFKUaBVLv2gWR0CXw6sWweNldX2UKGgGaAloD0MInGuYoXFFb0CUhpRSlGgVS7NoFkdAl8PNKqXF+HV9lChoBmgJaA9DCFD8GHOXhnFAlIaUUpRoFUvyaBZHQJfFO7lJYkp1fZQoaAZoCWgPQwi4PxcN2aZwQJSGlFKUaBVLzmgWR0CXxUbzbvgFdX2UKGgGaAloD0MIdbD+z+GHckCUhpRSlGgVS9xoFkdAl8V0gOjIrHV9lChoBmgJaA9DCI19ycZDvHBAlIaUUpRoFUvFaBZHQJfGVNZeRgZ1fZQoaAZoCWgPQwgjowOS8CpwQJSGlFKUaBVL2mgWR0CXxs6o2n89dX2UKGgGaAloD0MIMo/8wUCXcUCUhpRSlGgVS8toFkdAl8bxuO0b+HV9lChoBmgJaA9DCLJK6ZlemW9AlIaUUpRoFUvAaBZHQJfHWQU5+6R1fZQoaAZoCWgPQwiCyvj3mZxxQJSGlFKUaBVLz2gWR0CXx8BdD6WPdX2UKGgGaAloD0MINloO9JCWckCUhpRSlGgVTRoBaBZHQJfH8qe9SMt1fZQoaAZoCWgPQwgeGED40HZvQJSGlFKUaBVLpWgWR0CXyEO5J9RadX2UKGgGaAloD0MIkpOJWwU/cUCUhpRSlGgVTSYBaBZHQJfIWsaKk2x1fZQoaAZoCWgPQwjIXBlUG9xuQJSGlFKUaBVNIwFoFkdAl8kN+1Bt13V9lChoBmgJaA9DCC4bnfMTeXBAlIaUUpRoFUulaBZHQJfJtSDRMOB1fZQoaAZoCWgPQwh7hQX3w1tyQJSGlFKUaBVLr2gWR0CXyiyoXKr8dX2UKGgGaAloD0MIA1/RrVeNa0CUhpRSlGgVTSABaBZHQJfKKhN/OMV1fZQoaAZoCWgPQwgbhLndS+RwQJSGlFKUaBVNBgFoFkdAl8qvg75mAnV9lChoBmgJaA9DCHB5rBnZWXBAlIaUUpRoFUvPaBZHQJfKzLwF1Sx1fZQoaAZoCWgPQwgjZYukXTFvQJSGlFKUaBVLuWgWR0CXy7sgdOqOdX2UKGgGaAloD0MIkGrY78kHcUCUhpRSlGgVS8poFkdAl8xNnGsFMnV9lChoBmgJaA9DCMTt0LDYtnFAlIaUUpRoFUu5aBZHQJfMoKE384x1fZQoaAZoCWgPQwhZUu4+B4ZxQJSGlFKUaBVLqGgWR0CXzKzijtXxdX2UKGgGaAloD0MI7Es2HmybckCUhpRSlGgVTQ0BaBZHQJfNgRbr1NB1fZQoaAZoCWgPQwjI0ocu6HBwQJSGlFKUaBVLymgWR0CXzaxPfsNUdX2UKGgGaAloD0MIeR9Hc+SkcUCUhpRSlGgVS7BoFkdAl826w+t8u3V9lChoBmgJaA9DCBjQC3duDnJAlIaUUpRoFUuzaBZHQJfOfeuV5bB1fZQoaAZoCWgPQwhOX8/XLCFwQJSGlFKUaBVLtmgWR0CXzwQqqfe2dX2UKGgGaAloD0MI68n8o2/HcECUhpRSlGgVS6xoFkdAl89tJ4B3inV9lChoBmgJaA9DCKfpswMuqmBAlIaUUpRoFU3oA2gWR0CXz4R+jM3ZdX2UKGgGaAloD0MIwf7r3DRncECUhpRSlGgVTT4BaBZHQJfQd6Z6Uqx1fZQoaAZoCWgPQwi2K/TBMqVqQJSGlFKUaBVL82gWR0CX0UG9YfW+dX2UKGgGaAloD0MIKzOl9beDb0CUhpRSlGgVS79oFkdAl9GNRBNVR3V9lChoBmgJaA9DCJ3X2CWqiW9AlIaUUpRoFUu/aBZHQJfR6dEsrd51fZQoaAZoCWgPQwhuwVJdgPhwQJSGlFKUaBVL4GgWR0CX0urnkkrxdX2UKGgGaAloD0MIIjZYOAk2c0CUhpRSlGgVTRMBaBZHQJfTYm9g4Ot1fZQoaAZoCWgPQwgKoBhZ8i9wQJSGlFKUaBVLzWgWR0CX04Z4fOlgdX2UKGgGaAloD0MIE0iJXVuucUCUhpRSlGgVS9NoFkdAl9Oibc45tHV9lChoBmgJaA9DCOqwwi0fbHBAlIaUUpRoFUvgaBZHQJfT184Pwux1fZQoaAZoCWgPQwjOGOYE7WJxQJSGlFKUaBVLrmgWR0CX0/iBoVVQdX2UKGgGaAloD0MIK6ORz6u5bUCUhpRSlGgVS6ZoFkdAl9Q2KhtcfXV9lChoBmgJaA9DCOlDF9Q3g3FAlIaUUpRoFUvnaBZHQJfU7fxc3VF1fZQoaAZoCWgPQwgtfH2tyyFyQJSGlFKUaBVLo2gWR0CX1id9Dx9YdX2UKGgGaAloD0MIZRpNLob3ckCUhpRSlGgVS8xoFkdAl9Y3o5ggHXV9lChoBmgJaA9DCK9bBMY6yHJAlIaUUpRoFUu5aBZHQJfWfLQokRl1fZQoaAZoCWgPQwh1kUJZ+M1xQJSGlFKUaBVNHgFoFkdAl9d1qWTouHV9lChoBmgJaA9DCFX6CWe3JHBAlIaUUpRoFUvEaBZHQJfY719ORDF1fZQoaAZoCWgPQwg4g79fzN1wQJSGlFKUaBVLw2gWR0CX2Q8nNPgvdX2UKGgGaAloD0MIzlDc8SaJcUCUhpRSlGgVTQQBaBZHQJfZZPIn0Cl1fZQoaAZoCWgPQwhAaahRCP1wQJSGlFKUaBVL7GgWR0CX2r0cOskqdX2UKGgGaAloD0MIEi7kERyFcUCUhpRSlGgVS+VoFkdAl9r4hhYvFnV9lChoBmgJaA9DCLeyRGdZNXJAlIaUUpRoFUuraBZHQJfbaCGvfTF1fZQoaAZoCWgPQwiIgEOoEq1wQJSGlFKUaBVNCgFoFkdAl9uCuuA7P3V9lChoBmgJaA9DCO4nY3yYtWFAlIaUUpRoFU3oA2gWR0CX27tu1ndwdX2UKGgGaAloD0MI2lcepCeYcUCUhpRSlGgVS+NoFkdAl90wjIJZ4nV9lChoBmgJaA9DCPD7Ny+OeXBAlIaUUpRoFUu9aBZHQJfdW22G7Bh1fZQoaAZoCWgPQwj5vOKpR35wQJSGlFKUaBVNzAJoFkdAl97DVQQ+U3V9lChoBmgJaA9DCLFppRCI1nNAlIaUUpRoFUvGaBZHQJffTIFNcnp1fZQoaAZoCWgPQwhcqz3sxd9xQJSGlFKUaBVLpmgWR0CX4C3bEgnudX2UKGgGaAloD0MIRgiPNo62cECUhpRSlGgVS9ZoFkdAl+AsR6F/QXV9lChoBmgJaA9DCCBhGLDk5HBAlIaUUpRoFUvQaBZHQJfhULCvX9R1fZQoaAZoCWgPQwj/ImjMpPZxQJSGlFKUaBVL1WgWR0CX4ixQBPsSdX2UKGgGaAloD0MItMnhk05OcUCUhpRSlGgVS/poFkdAl+PQrhBJI3V9lChoBmgJaA9DCJylZDmJ+G5AlIaUUpRoFUvEaBZHQJfjz5CWu5l1fZQoaAZoCWgPQwjs+C8QxKxwQJSGlFKUaBVNXgFoFkdAl+RT1schknV9lChoBmgJaA9DCHEhj+AGCnBAlIaUUpRoFUuuaBZHQJfknVLBbfR1fZQoaAZoCWgPQwgDJQUWwFtkQJSGlFKUaBVN6ANoFkdAl+TGPHT7VXV9lChoBmgJaA9DCHswKT5+xHJAlIaUUpRoFUvYaBZHQJfmfPzFuNx1fZQoaAZoCWgPQwhcrKjB9DxyQJSGlFKUaBVNJQFoFkdAl+bKiO/+KnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_demo.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:951f7026848ed18fd8eba10d05e9f8dd0d9b436f872e58803a5ac5d186492ee7
|
3 |
+
size 144013
|
lunar_demo/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b2043a4d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b2043a560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b2043a5f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b2043a680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0b2043a710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0b2043a7a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b2043a830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0b2043a8c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b2043a950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b2043a9e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b2043aa70>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0b20475de0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652603037.2690973,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICgd72i1bY/xiW/vqF3Gb442z291qaCvQAAAAAAAAAAMz9sPGcRRj4j+Oi9gmLavoT0Prxqsyu9AAAAAAAAAADN1yA9Tue+P/x8HT5RHzW+Fa0XPetcFT0AAAAAAAAAAEY0ML7ByYC8Aq0Iu/8sOLlD0Oo9knI0OgAAgD8AAIA/TWYjvjdLUT4Ic989HciNvt/vvbzyR1M9AAAAAAAAAACmMYa9kA+NPmdsIj2HmbW+m1RavOt507wAAAAAAAAAAMYTFL7Ibu07zYIhPi5onLz2yoe9YHSQPQAAgD8AAIA/uq+Ivo+SKz9iJAm+8YAOv9OEHb4C31Y9AAAAAAAAAAB6NqS+iZklPQ1mFD7YmQK+GAhnvr1gi74AAIA/AAAAAOAmET64/um5AjtuuWnqH7VUwx87pF+NOAAAgD8AAIA/TSEtPoOLfbzeT+05UXYpuNEq4r0j0Bu5AACAPwAAgD8K3r2+M92mPtqkyT1wG42+k2ilveUwuDwAAAAAAAAAAPqnNr6I4ou8Ms1Ru1z9qLm/A/Y9ahWWOgAAgD8AAIA/U/EdPg+7C7w1ioE7d869ueedfr3HKZ66AACAPwAAgD+t5YC+aEHFvO3ElzseSL45xdIsPtGck7oAAIA/AACAP1qRtr32KFC4ox/Vs2A/2S5FJv67JDeoMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOIdrtYeOcECUhpRSlIwBbJRLpowBdJRHQJe5nCyhSLt1fZQoaAZoCWgPQwhkdavnZCpxQJSGlFKUaBVLvGgWR0CXuep5eJHidX2UKGgGaAloD0MIg4b+CS5KckCUhpRSlGgVS6poFkdAl7nnTd+G5HV9lChoBmgJaA9DCGTL8nVZNXFAlIaUUpRoFUvHaBZHQJe5/fCQ9zR1fZQoaAZoCWgPQwip9ul4zLlkQJSGlFKUaBVN6ANoFkdAl7qH7pFCs3V9lChoBmgJaA9DCGngRzVsvW5AlIaUUpRoFUuhaBZHQJe6pFNL1291fZQoaAZoCWgPQwgbDeAtENtwQJSGlFKUaBVLy2gWR0CXutZxrBTGdX2UKGgGaAloD0MIHeihts0ocECUhpRSlGgVS8loFkdAl7rnE2pAEHV9lChoBmgJaA9DCCNJEK6AAm9AlIaUUpRoFUupaBZHQJe7JUADJU51fZQoaAZoCWgPQwjzxklhXidzQJSGlFKUaBVLuGgWR0CXvB2tMfzSdX2UKGgGaAloD0MIrHE2HYFLcECUhpRSlGgVS75oFkdAl7waSgXdkHV9lChoBmgJaA9DCPc8f9ooU3FAlIaUUpRoFUvQaBZHQJe8OQXAM2F1fZQoaAZoCWgPQwjCa5c2XHBwQJSGlFKUaBVLt2gWR0CXvNAp8WsSdX2UKGgGaAloD0MIWUxsPu5YcUCUhpRSlGgVTbkBaBZHQJe85t0mtyR1fZQoaAZoCWgPQwhWnkDYKXxvQJSGlFKUaBVLxmgWR0CXvXWsRxtIdX2UKGgGaAloD0MIfJi9bDsFb0CUhpRSlGgVS7BoFkdAl737VSXMQnV9lChoBmgJaA9DCHOAYI6ea29AlIaUUpRoFUuyaBZHQJe/Bhb4agp1fZQoaAZoCWgPQwiNz2T/PHJxQJSGlFKUaBVL32gWR0CXvz3azu4PdX2UKGgGaAloD0MI+uyA68ozcUCUhpRSlGgVS+toFkdAl7+BN21Ul3V9lChoBmgJaA9DCPhQoiVPlXFAlIaUUpRoFU0MAWgWR0CXwBZof0VadX2UKGgGaAloD0MIt32P+qsucUCUhpRSlGgVS6poFkdAl8BK20AtF3V9lChoBmgJaA9DCM3mcRjMh29AlIaUUpRoFUvXaBZHQJfAat/4Irx1fZQoaAZoCWgPQwj6uaEpe+xxQJSGlFKUaBVLu2gWR0CXwNmAskIHdX2UKGgGaAloD0MIcyoZAOp7cECUhpRSlGgVTQIBaBZHQJfA7RNRFZx1fZQoaAZoCWgPQwhxOzQsxoVwQJSGlFKUaBVNGwFoFkdAl8FqcAimmHV9lChoBmgJaA9DCGTnbWz2R3JAlIaUUpRoFU0OAWgWR0CXwYGu9vjwdX2UKGgGaAloD0MIC34bYryOb0CUhpRSlGgVS8RoFkdAl8Gq5PM0QHV9lChoBmgJaA9DCPMd/MQBmXFAlIaUUpRoFUvqaBZHQJfB2qaPS2J1fZQoaAZoCWgPQwgeGhajLslvQJSGlFKUaBVLymgWR0CXwnCWNWELdX2UKGgGaAloD0MI5YBdTd6ccUCUhpRSlGgVS+JoFkdAl8JsJtzjm3V9lChoBmgJaA9DCFvri4T2WXFAlIaUUpRoFUu7aBZHQJfCnN5dGAl1fZQoaAZoCWgPQwi8BKc+UH1xQJSGlFKUaBVLv2gWR0CXw6sWweNldX2UKGgGaAloD0MInGuYoXFFb0CUhpRSlGgVS7NoFkdAl8PNKqXF+HV9lChoBmgJaA9DCFD8GHOXhnFAlIaUUpRoFUvyaBZHQJfFO7lJYkp1fZQoaAZoCWgPQwi4PxcN2aZwQJSGlFKUaBVLzmgWR0CXxUbzbvgFdX2UKGgGaAloD0MIdbD+z+GHckCUhpRSlGgVS9xoFkdAl8V0gOjIrHV9lChoBmgJaA9DCI19ycZDvHBAlIaUUpRoFUvFaBZHQJfGVNZeRgZ1fZQoaAZoCWgPQwgjowOS8CpwQJSGlFKUaBVL2mgWR0CXxs6o2n89dX2UKGgGaAloD0MIMo/8wUCXcUCUhpRSlGgVS8toFkdAl8bxuO0b+HV9lChoBmgJaA9DCLJK6ZlemW9AlIaUUpRoFUvAaBZHQJfHWQU5+6R1fZQoaAZoCWgPQwiCyvj3mZxxQJSGlFKUaBVLz2gWR0CXx8BdD6WPdX2UKGgGaAloD0MINloO9JCWckCUhpRSlGgVTRoBaBZHQJfH8qe9SMt1fZQoaAZoCWgPQwgeGED40HZvQJSGlFKUaBVLpWgWR0CXyEO5J9RadX2UKGgGaAloD0MIkpOJWwU/cUCUhpRSlGgVTSYBaBZHQJfIWsaKk2x1fZQoaAZoCWgPQwjIXBlUG9xuQJSGlFKUaBVNIwFoFkdAl8kN+1Bt13V9lChoBmgJaA9DCC4bnfMTeXBAlIaUUpRoFUulaBZHQJfJtSDRMOB1fZQoaAZoCWgPQwh7hQX3w1tyQJSGlFKUaBVLr2gWR0CXyiyoXKr8dX2UKGgGaAloD0MIA1/RrVeNa0CUhpRSlGgVTSABaBZHQJfKKhN/OMV1fZQoaAZoCWgPQwgbhLndS+RwQJSGlFKUaBVNBgFoFkdAl8qvg75mAnV9lChoBmgJaA9DCHB5rBnZWXBAlIaUUpRoFUvPaBZHQJfKzLwF1Sx1fZQoaAZoCWgPQwgjZYukXTFvQJSGlFKUaBVLuWgWR0CXy7sgdOqOdX2UKGgGaAloD0MIkGrY78kHcUCUhpRSlGgVS8poFkdAl8xNnGsFMnV9lChoBmgJaA9DCMTt0LDYtnFAlIaUUpRoFUu5aBZHQJfMoKE384x1fZQoaAZoCWgPQwhZUu4+B4ZxQJSGlFKUaBVLqGgWR0CXzKzijtXxdX2UKGgGaAloD0MI7Es2HmybckCUhpRSlGgVTQ0BaBZHQJfNgRbr1NB1fZQoaAZoCWgPQwjI0ocu6HBwQJSGlFKUaBVLymgWR0CXzaxPfsNUdX2UKGgGaAloD0MIeR9Hc+SkcUCUhpRSlGgVS7BoFkdAl826w+t8u3V9lChoBmgJaA9DCBjQC3duDnJAlIaUUpRoFUuzaBZHQJfOfeuV5bB1fZQoaAZoCWgPQwhOX8/XLCFwQJSGlFKUaBVLtmgWR0CXzwQqqfe2dX2UKGgGaAloD0MI68n8o2/HcECUhpRSlGgVS6xoFkdAl89tJ4B3inV9lChoBmgJaA9DCKfpswMuqmBAlIaUUpRoFU3oA2gWR0CXz4R+jM3ZdX2UKGgGaAloD0MIwf7r3DRncECUhpRSlGgVTT4BaBZHQJfQd6Z6Uqx1fZQoaAZoCWgPQwi2K/TBMqVqQJSGlFKUaBVL82gWR0CX0UG9YfW+dX2UKGgGaAloD0MIKzOl9beDb0CUhpRSlGgVS79oFkdAl9GNRBNVR3V9lChoBmgJaA9DCJ3X2CWqiW9AlIaUUpRoFUu/aBZHQJfR6dEsrd51fZQoaAZoCWgPQwhuwVJdgPhwQJSGlFKUaBVL4GgWR0CX0urnkkrxdX2UKGgGaAloD0MIIjZYOAk2c0CUhpRSlGgVTRMBaBZHQJfTYm9g4Ot1fZQoaAZoCWgPQwgKoBhZ8i9wQJSGlFKUaBVLzWgWR0CX04Z4fOlgdX2UKGgGaAloD0MIE0iJXVuucUCUhpRSlGgVS9NoFkdAl9Oibc45tHV9lChoBmgJaA9DCOqwwi0fbHBAlIaUUpRoFUvgaBZHQJfT184Pwux1fZQoaAZoCWgPQwjOGOYE7WJxQJSGlFKUaBVLrmgWR0CX0/iBoVVQdX2UKGgGaAloD0MIK6ORz6u5bUCUhpRSlGgVS6ZoFkdAl9Q2KhtcfXV9lChoBmgJaA9DCOlDF9Q3g3FAlIaUUpRoFUvnaBZHQJfU7fxc3VF1fZQoaAZoCWgPQwgtfH2tyyFyQJSGlFKUaBVLo2gWR0CX1id9Dx9YdX2UKGgGaAloD0MIZRpNLob3ckCUhpRSlGgVS8xoFkdAl9Y3o5ggHXV9lChoBmgJaA9DCK9bBMY6yHJAlIaUUpRoFUu5aBZHQJfWfLQokRl1fZQoaAZoCWgPQwh1kUJZ+M1xQJSGlFKUaBVNHgFoFkdAl9d1qWTouHV9lChoBmgJaA9DCFX6CWe3JHBAlIaUUpRoFUvEaBZHQJfY719ORDF1fZQoaAZoCWgPQwg4g79fzN1wQJSGlFKUaBVLw2gWR0CX2Q8nNPgvdX2UKGgGaAloD0MIzlDc8SaJcUCUhpRSlGgVTQQBaBZHQJfZZPIn0Cl1fZQoaAZoCWgPQwhAaahRCP1wQJSGlFKUaBVL7GgWR0CX2r0cOskqdX2UKGgGaAloD0MIEi7kERyFcUCUhpRSlGgVS+VoFkdAl9r4hhYvFnV9lChoBmgJaA9DCLeyRGdZNXJAlIaUUpRoFUuraBZHQJfbaCGvfTF1fZQoaAZoCWgPQwiIgEOoEq1wQJSGlFKUaBVNCgFoFkdAl9uCuuA7P3V9lChoBmgJaA9DCO4nY3yYtWFAlIaUUpRoFU3oA2gWR0CX27tu1ndwdX2UKGgGaAloD0MI2lcepCeYcUCUhpRSlGgVS+NoFkdAl90wjIJZ4nV9lChoBmgJaA9DCPD7Ny+OeXBAlIaUUpRoFUu9aBZHQJfdW22G7Bh1fZQoaAZoCWgPQwj5vOKpR35wQJSGlFKUaBVNzAJoFkdAl97DVQQ+U3V9lChoBmgJaA9DCLFppRCI1nNAlIaUUpRoFUvGaBZHQJffTIFNcnp1fZQoaAZoCWgPQwhcqz3sxd9xQJSGlFKUaBVLpmgWR0CX4C3bEgnudX2UKGgGaAloD0MIRgiPNo62cECUhpRSlGgVS9ZoFkdAl+AsR6F/QXV9lChoBmgJaA9DCCBhGLDk5HBAlIaUUpRoFUvQaBZHQJfhULCvX9R1fZQoaAZoCWgPQwj/ImjMpPZxQJSGlFKUaBVL1WgWR0CX4ixQBPsSdX2UKGgGaAloD0MItMnhk05OcUCUhpRSlGgVS/poFkdAl+PQrhBJI3V9lChoBmgJaA9DCJylZDmJ+G5AlIaUUpRoFUvEaBZHQJfjz5CWu5l1fZQoaAZoCWgPQwjs+C8QxKxwQJSGlFKUaBVNXgFoFkdAl+RT1schknV9lChoBmgJaA9DCHEhj+AGCnBAlIaUUpRoFUuuaBZHQJfknVLBbfR1fZQoaAZoCWgPQwgDJQUWwFtkQJSGlFKUaBVN6ANoFkdAl+TGPHT7VXV9lChoBmgJaA9DCHswKT5+xHJAlIaUUpRoFUvYaBZHQJfmfPzFuNx1fZQoaAZoCWgPQwhcrKjB9DxyQJSGlFKUaBVNJQFoFkdAl+bKiO/+KnVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 310,
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
lunar_demo/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ceace9dc85ba87786588c3e7e96b1d1d2f4464510639f972c9270b489cd9dd7e
|
3 |
size 84893
|
lunar_demo/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ceeac00b06056477b51db5f86184533283b838a308cbd98ef0e4b0e5ea8cb10c
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87e03ae996527a3e111c3a5a311da8a0061273bc0277deae134f5e5ab010f29b
|
3 |
+
size 222708
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 266.69077642683885, "std_reward": 23.440184570268897, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T09:01:36.192911"}
|