Commit
·
cbf5e5a
1
Parent(s):
ea16f92
Push PPO Agent for LunarLander
Browse files- PPO_for_lunarlander.zip +3 -0
- PPO_for_lunarlander/_stable_baselines3_version +1 -0
- PPO_for_lunarlander/data +95 -0
- PPO_for_lunarlander/policy.optimizer.pth +3 -0
- PPO_for_lunarlander/policy.pth +3 -0
- PPO_for_lunarlander/pytorch_variables.pth +3 -0
- PPO_for_lunarlander/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO_for_lunarlander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bd78f8176be66e444d1d1a26d9c493e98ae9feae3f8cd0a5a05ef738d1bbb83
|
3 |
+
size 147424
|
PPO_for_lunarlander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
PPO_for_lunarlander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eac7d4b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eac7d4c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eac7d4ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eac7d4d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3eac7d4dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3eac7d4e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3eac7d4ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eac7d4f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3eac756040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eac7560d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eac756160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eac7561f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f3eac7d3240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675670272645909678,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPbgmj5bzU4/+FYLvnPqqL7se5097cTUvQAAAAAAAAAAQESIvcOtM7qsMpC5z28GtS7uLzskNqg4AACAPwAAgD9Nhri9w2Unus7Wz7qHJwi2yzkQOwXA7TkAAAAAAACAP1NmRz7PNV0/+VhEPe+Lj77dxA0+IsgJvAAAAAAAAAAAmvkFPfbMWrp5Eq+7dazPNwhUhroWeYY6AACAPwAAgD+arfe7uae4PjVh2r3fDiW+4G4avajN17sAAAAAAAAAAICbOj3DATq6eDrAOvwVNzabxmU7dX7euQAAgD8AAIA/GiwZPVzPY7olR028MbdhNkUbMLsKp821AACAPwAAgD/NbH46FAaeutyjoLpVc3O0LuHuurPPtjkAAIA/AACAPwBwSTv2FDS6vZ+/u23uKDXRPCe6r52ctAAAgD8AAIA/86DCva5Fp7rOo3K4dWpZsw4dVjrybIs3AACAPwAAgD+gVQo+BQbdu6D1PLok6gQ4PpYuvfOkfDkAAIA/AACAP7M1Ij1S8Om59X19O95xgjQD9Ea7YwuUugAAgD8AAIA/mnWouxT4mbo2kJA6zNN8Nrh3dboaAae5AACAPwAAgD9mO+q84TSzugAzgrvmc1O1izDcOEKtlDoAAIA/AACAPwDfaj09GlK5T33Fu8v8Pzi31Aa6banyNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInPurx30AXUCUhpRSlIwBbJRN6AOMAXSUR0CXZ58XvYvndX2UKGgGaAloD0MI7Ggc6neTYUCUhpRSlGgVTegDaBZHQJduAxXXAdp1fZQoaAZoCWgPQwhrgqj7AMdfQJSGlFKUaBVN6ANoFkdAl4k7vgFX73V9lChoBmgJaA9DCFfQtMTKpmJAlIaUUpRoFU3oA2gWR0CXlfdZ7ojfdX2UKGgGaAloD0MI7N0f79U7ZECUhpRSlGgVTegDaBZHQJeeiKuSwGJ1fZQoaAZoCWgPQwimZDkJJSJhQJSGlFKUaBVN6ANoFkdAl607z06HTXV9lChoBmgJaA9DCHtJY7SO/2RAlIaUUpRoFU3oA2gWR0CXrlvkRzzVdX2UKGgGaAloD0MITYHMzqLPZECUhpRSlGgVTegDaBZHQJeuYX3xnWd1fZQoaAZoCWgPQwhngAuy5UNmQJSGlFKUaBVN6ANoFkdAl6/kmplz2nV9lChoBmgJaA9DCIMUPIVcyGFAlIaUUpRoFU3oA2gWR0CXsMh/Aj6fdX2UKGgGaAloD0MIQ3OdRlqHYECUhpRSlGgVTegDaBZHQJexGZhKDkF1fZQoaAZoCWgPQwjY8sr1NlZhQJSGlFKUaBVN6ANoFkdAl7QIdU83dnV9lChoBmgJaA9DCLk0fuGVN1lAlIaUUpRoFU3oA2gWR0CXuDKujh1ldX2UKGgGaAloD0MI4ZaPpKTPX0CUhpRSlGgVTegDaBZHQJe5Cw/xDst1fZQoaAZoCWgPQwiy8stgjFNkQJSGlFKUaBVN6ANoFkdAl7xQ79ycTnV9lChoBmgJaA9DCBedLLVeZWJAlIaUUpRoFU3oA2gWR0CXwqHxz7uVdX2UKGgGaAloD0MIt9JrszEmZkCUhpRSlGgVTcEDaBZHQJfEAabWmP51fZQoaAZoCWgPQwgBLzNslEtgQJSGlFKUaBVN6ANoFkdAl9IF8gIQe3V9lChoBmgJaA9DCDnRrkJK8GRAlIaUUpRoFU3oA2gWR0CX7BkAPuohdX2UKGgGaAloD0MIPpRoyWPZZUCUhpRSlGgVTegDaBZHQJf2R1EE1VJ1fZQoaAZoCWgPQwhn74y2qjlhQJSGlFKUaBVN6ANoFkdAmAFAudwvQHV9lChoBmgJaA9DCH9N1qiH+mFAlIaUUpRoFU3oA2gWR0CYEsXfIjnndX2UKGgGaAloD0MIrdo1IS3QYUCUhpRSlGgVTegDaBZHQJgTzp3X7Lt1fZQoaAZoCWgPQwj5npEIjV5mQJSGlFKUaBVN6ANoFkdAmBPRnanJk3V9lChoBmgJaA9DCMgm+RG/wF5AlIaUUpRoFU3oA2gWR0CYFTdBBzFNdX2UKGgGaAloD0MIaw4QzFGdYkCUhpRSlGgVTegDaBZHQJgWBXEIgNh1fZQoaAZoCWgPQwjohxHCo9BbQJSGlFKUaBVN6ANoFkdAmBZMju8brHV9lChoBmgJaA9DCLcpHhfV72NAlIaUUpRoFU3oA2gWR0CYGNzyz5XVdX2UKGgGaAloD0MIbQIMyx/yYUCUhpRSlGgVTegDaBZHQJgcnk8zQ/p1fZQoaAZoCWgPQwhodXKG4s1hQJSGlFKUaBVN6ANoFkdAmB2H18LKFXV9lChoBmgJaA9DCN2adFsiv2NAlIaUUpRoFU3oA2gWR0CYIGN3np0PdX2UKGgGaAloD0MInYU97fBuWkCUhpRSlGgVTegDaBZHQJgk3ck+otN1fZQoaAZoCWgPQwiIn/8evDVkQJSGlFKUaBVN6ANoFkdAmCWfxMFlkHV9lChoBmgJaA9DCAgAjj17LVxAlIaUUpRoFU3oA2gWR0CYLqW9US7HdX2UKGgGaAloD0MIF7fRAN5eY0CUhpRSlGgVTegDaBZHQJhMdghKUV11fZQoaAZoCWgPQwhMUMO3sJpjQJSGlFKUaBVN6ANoFkdAmFUGYKIBR3V9lChoBmgJaA9DCDWXGwx1BltAlIaUUpRoFU3oA2gWR0CYXPGbkOqedX2UKGgGaAloD0MIchWL35RhYkCUhpRSlGgVTegDaBZHQJhqMzch1T11fZQoaAZoCWgPQwj9FMeBV6RlQJSGlFKUaBVN6ANoFkdAmGtLMHKOk3V9lChoBmgJaA9DCLK5ap6jfWJAlIaUUpRoFU3oA2gWR0CYa05vtMPCdX2UKGgGaAloD0MIyXGndLCtZkCUhpRSlGgVTegDaBZHQJhswVoHs1N1fZQoaAZoCWgPQwjqWnufKoFgQJSGlFKUaBVN6ANoFkdAmG2STUy57XV9lChoBmgJaA9DCOWXwRiRRWRAlIaUUpRoFU3oA2gWR0CYbd3zMA3ldX2UKGgGaAloD0MILZYi+cp5YkCUhpRSlGgVTegDaBZHQJhw1xyXD3x1fZQoaAZoCWgPQwg7wmnBC1VkQJSGlFKUaBVN6ANoFkdAmHaDtw71ZnV9lChoBmgJaA9DCNZyZyaYz2JAlIaUUpRoFU3oA2gWR0CYd8yHVPN3dX2UKGgGaAloD0MIZvUOt8NzYUCUhpRSlGgVTegDaBZHQJh8my6cy311fZQoaAZoCWgPQwhvg9pvbUdlQJSGlFKUaBVN6ANoFkdAmIMxClabF3V9lChoBmgJaA9DCLPNjemJDmNAlIaUUpRoFU3oA2gWR0CYhEwW3z+WdX2UKGgGaAloD0MIIVuWr8uLW0CUhpRSlGgVTegDaBZHQJiNKq94/u91fZQoaAZoCWgPQwh1H4DUJl9lQJSGlFKUaBVN6ANoFkdAmJQLAxi5NHV9lChoBmgJaA9DCDeKrDWUGGRAlIaUUpRoFU3oA2gWR0CYsiIAwPAgdX2UKGgGaAloD0MImj474DoYZ0CUhpRSlGgVTegDaBZHQJi+GyprDZV1fZQoaAZoCWgPQwiTGtoA7MxvQJSGlFKUaBVNqwJoFkdAmMHs6zVtoHV9lChoBmgJaA9DCKQYINGER2NAlIaUUpRoFU3oA2gWR0CYy/bvgFX8dX2UKGgGaAloD0MI+dozS4LnYUCUhpRSlGgVTegDaBZHQJjM5cnmaH91fZQoaAZoCWgPQwh4nKIjOV5gQJSGlFKUaBVN6ANoFkdAmMzoZ/CqInV9lChoBmgJaA9DCHMs76oH7F5AlIaUUpRoFU3oA2gWR0CYzkEU0vXcdX2UKGgGaAloD0MIQDIdOj2SYkCUhpRSlGgVTegDaBZHQJjPCaScLBt1fZQoaAZoCWgPQwjG/NzQlC9nQJSGlFKUaBVN6ANoFkdAmM9lvybx3HV9lChoBmgJaA9DCIdtizIbTWBAlIaUUpRoFU3oA2gWR0CY0gHH3lCDdX2UKGgGaAloD0MIyJkmbD8YYECUhpRSlGgVTegDaBZHQJjWeEug6EJ1fZQoaAZoCWgPQwhI4uXpXHRnQJSGlFKUaBVN6ANoFkdAmNleUQkHEHV9lChoBmgJaA9DCDPDRlk/m2FAlIaUUpRoFU3oA2gWR0CY3arQw9JSdX2UKGgGaAloD0MI2LrUCH3PYUCUhpRSlGgVTegDaBZHQJjecM4LkS51fZQoaAZoCWgPQwiBzqRNVVVoQJSGlFKUaBVN6ANoFkdAmOcmtZFG5XV9lChoBmgJaA9DCMTuO4bHbk1AlIaUUpRoFUvlaBZHQJjt4lt0mt11fZQoaAZoCWgPQwh5ru/DQRNnQJSGlFKUaBVN6ANoFkdAmO/DYukDZHV9lChoBmgJaA9DCHbCS3Bqv2NAlIaUUpRoFU3oA2gWR0CZDz6eGwiadX2UKGgGaAloD0MI1GNbBpyzYECUhpRSlGgVTegDaBZHQJkW8fzSThZ1fZQoaAZoCWgPQwiP5PIf0qFbQJSGlFKUaBVN6ANoFkdAmRnHI2fkFXV9lChoBmgJaA9DCBO54Az+tGJAlIaUUpRoFU3oA2gWR0CZIwzJIUaidX2UKGgGaAloD0MIo1uv6UFDZkCUhpRSlGgVTegDaBZHQJkj6ULUkOZ1fZQoaAZoCWgPQwgDtRg8TLNgQJSGlFKUaBVN6ANoFkdAmSPrWy1NQHV9lChoBmgJaA9DCH46HjPQmGRAlIaUUpRoFU3oA2gWR0CZJbYA80UHdX2UKGgGaAloD0MIjNgngOLtZUCUhpRSlGgVTegDaBZHQJkmyt8uzyB1fZQoaAZoCWgPQwjBU8iV+rZkQJSGlFKUaBVN6ANoFkdAmSc3/giu+3V9lChoBmgJaA9DCIi85erHTGdAlIaUUpRoFU3oA2gWR0CZKr0IkZ75dX2UKGgGaAloD0MIVYhH4uV8W0CUhpRSlGgVTegDaBZHQJkxhgjQiRp1fZQoaAZoCWgPQwh64c6FkdxbQJSGlFKUaBVN6ANoFkdAmTZIBNmDlHV9lChoBmgJaA9DCDOJesEnsWJAlIaUUpRoFU3oA2gWR0CZPE7KaG5+dX2UKGgGaAloD0MI1qvI6ADqZECUhpRSlGgVTegDaBZHQJlGCgCfYjB1fZQoaAZoCWgPQwjk9zb9WRZmQJSGlFKUaBVN6ANoFkdAmUvxzmwJPnV9lChoBmgJaA9DCONRKuEJUWZAlIaUUpRoFU3oA2gWR0CZTVLV4HHFdX2UKGgGaAloD0MIM+AsJcthYkCUhpRSlGgVTegDaBZHQJlsod7v5QB1fZQoaAZoCWgPQwhFgNO7eG1iQJSGlFKUaBVN6ANoFkdAmXcecc2itnV9lChoBmgJaA9DCNCYSdQL8VpAlIaUUpRoFU3oA2gWR0CZelDAaef7dX2UKGgGaAloD0MIiIGufYE6YkCUhpRSlGgVTegDaBZHQJmGYJgLJCB1fZQoaAZoCWgPQwhk5ZfBGBlkQJSGlFKUaBVN6ANoFkdAmYfHo5ggHXV9lChoBmgJaA9DCBhgH526A2RAlIaUUpRoFU3oA2gWR0CZh86GgzxgdX2UKGgGaAloD0MIzEbn/BTbZUCUhpRSlGgVTegDaBZHQJmJzwsoUi91fZQoaAZoCWgPQwgonN1apkJgQJSGlFKUaBVN6ANoFkdAmYsPIwM6R3V9lChoBmgJaA9DCOpZEMr7DGBAlIaUUpRoFU3oA2gWR0CZi4HYYixFdX2UKGgGaAloD0MItaM4R50MZECUhpRSlGgVTegDaBZHQJmPYGTs6aN1fZQoaAZoCWgPQwjoM6DejG9kQJSGlFKUaBVN6ANoFkdAmZVsjeKsMnV9lChoBmgJaA9DCMMMjScCEWdAlIaUUpRoFU3oA2gWR0CZmJ1UVBUrdX2UKGgGaAloD0MIiSZQxKKxYUCUhpRSlGgVTegDaBZHQJmeffP5YYB1fZQoaAZoCWgPQwhWZd8VQRxiQJSGlFKUaBVN6ANoFkdAmaurB0p3HXV9lChoBmgJaA9DCPktOlnqgmFAlIaUUpRoFU3oA2gWR0CZsmvQnhKldX2UKGgGaAloD0MI/YLdsG1cYkCUhpRSlGgVTegDaBZHQJmzvQ6ZH/d1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
PPO_for_lunarlander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91dd67d3696889b97d0457b4d7500e1296325cbe7de7eef5c20cc083860a0f79
|
3 |
+
size 87929
|
PPO_for_lunarlander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fc065e5c2e140c4a2e38a2a385bb3968ad3285be9604c91bb6dda8f237d8214
|
3 |
+
size 43393
|
PPO_for_lunarlander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO_for_lunarlander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 245.46 +/- 18.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eac7d4b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eac7d4c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eac7d4ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eac7d4d30>", "_build": "<function ActorCriticPolicy._build at 0x7f3eac7d4dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3eac7d4e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3eac7d4ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eac7d4f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3eac756040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eac7560d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eac756160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eac7561f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3eac7d3240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675670272645909678, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPbgmj5bzU4/+FYLvnPqqL7se5097cTUvQAAAAAAAAAAQESIvcOtM7qsMpC5z28GtS7uLzskNqg4AACAPwAAgD9Nhri9w2Unus7Wz7qHJwi2yzkQOwXA7TkAAAAAAACAP1NmRz7PNV0/+VhEPe+Lj77dxA0+IsgJvAAAAAAAAAAAmvkFPfbMWrp5Eq+7dazPNwhUhroWeYY6AACAPwAAgD+arfe7uae4PjVh2r3fDiW+4G4avajN17sAAAAAAAAAAICbOj3DATq6eDrAOvwVNzabxmU7dX7euQAAgD8AAIA/GiwZPVzPY7olR028MbdhNkUbMLsKp821AACAPwAAgD/NbH46FAaeutyjoLpVc3O0LuHuurPPtjkAAIA/AACAPwBwSTv2FDS6vZ+/u23uKDXRPCe6r52ctAAAgD8AAIA/86DCva5Fp7rOo3K4dWpZsw4dVjrybIs3AACAPwAAgD+gVQo+BQbdu6D1PLok6gQ4PpYuvfOkfDkAAIA/AACAP7M1Ij1S8Om59X19O95xgjQD9Ea7YwuUugAAgD8AAIA/mnWouxT4mbo2kJA6zNN8Nrh3dboaAae5AACAPwAAgD9mO+q84TSzugAzgrvmc1O1izDcOEKtlDoAAIA/AACAPwDfaj09GlK5T33Fu8v8Pzi31Aa6banyNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInPurx30AXUCUhpRSlIwBbJRN6AOMAXSUR0CXZ58XvYvndX2UKGgGaAloD0MI7Ggc6neTYUCUhpRSlGgVTegDaBZHQJduAxXXAdp1fZQoaAZoCWgPQwhrgqj7AMdfQJSGlFKUaBVN6ANoFkdAl4k7vgFX73V9lChoBmgJaA9DCFfQtMTKpmJAlIaUUpRoFU3oA2gWR0CXlfdZ7ojfdX2UKGgGaAloD0MI7N0f79U7ZECUhpRSlGgVTegDaBZHQJeeiKuSwGJ1fZQoaAZoCWgPQwimZDkJJSJhQJSGlFKUaBVN6ANoFkdAl607z06HTXV9lChoBmgJaA9DCHtJY7SO/2RAlIaUUpRoFU3oA2gWR0CXrlvkRzzVdX2UKGgGaAloD0MITYHMzqLPZECUhpRSlGgVTegDaBZHQJeuYX3xnWd1fZQoaAZoCWgPQwhngAuy5UNmQJSGlFKUaBVN6ANoFkdAl6/kmplz2nV9lChoBmgJaA9DCIMUPIVcyGFAlIaUUpRoFU3oA2gWR0CXsMh/Aj6fdX2UKGgGaAloD0MIQ3OdRlqHYECUhpRSlGgVTegDaBZHQJexGZhKDkF1fZQoaAZoCWgPQwjY8sr1NlZhQJSGlFKUaBVN6ANoFkdAl7QIdU83dnV9lChoBmgJaA9DCLk0fuGVN1lAlIaUUpRoFU3oA2gWR0CXuDKujh1ldX2UKGgGaAloD0MI4ZaPpKTPX0CUhpRSlGgVTegDaBZHQJe5Cw/xDst1fZQoaAZoCWgPQwiy8stgjFNkQJSGlFKUaBVN6ANoFkdAl7xQ79ycTnV9lChoBmgJaA9DCBedLLVeZWJAlIaUUpRoFU3oA2gWR0CXwqHxz7uVdX2UKGgGaAloD0MIt9JrszEmZkCUhpRSlGgVTcEDaBZHQJfEAabWmP51fZQoaAZoCWgPQwgBLzNslEtgQJSGlFKUaBVN6ANoFkdAl9IF8gIQe3V9lChoBmgJaA9DCDnRrkJK8GRAlIaUUpRoFU3oA2gWR0CX7BkAPuohdX2UKGgGaAloD0MIPpRoyWPZZUCUhpRSlGgVTegDaBZHQJf2R1EE1VJ1fZQoaAZoCWgPQwhn74y2qjlhQJSGlFKUaBVN6ANoFkdAmAFAudwvQHV9lChoBmgJaA9DCH9N1qiH+mFAlIaUUpRoFU3oA2gWR0CYEsXfIjnndX2UKGgGaAloD0MIrdo1IS3QYUCUhpRSlGgVTegDaBZHQJgTzp3X7Lt1fZQoaAZoCWgPQwj5npEIjV5mQJSGlFKUaBVN6ANoFkdAmBPRnanJk3V9lChoBmgJaA9DCMgm+RG/wF5AlIaUUpRoFU3oA2gWR0CYFTdBBzFNdX2UKGgGaAloD0MIaw4QzFGdYkCUhpRSlGgVTegDaBZHQJgWBXEIgNh1fZQoaAZoCWgPQwjohxHCo9BbQJSGlFKUaBVN6ANoFkdAmBZMju8brHV9lChoBmgJaA9DCLcpHhfV72NAlIaUUpRoFU3oA2gWR0CYGNzyz5XVdX2UKGgGaAloD0MIbQIMyx/yYUCUhpRSlGgVTegDaBZHQJgcnk8zQ/p1fZQoaAZoCWgPQwhodXKG4s1hQJSGlFKUaBVN6ANoFkdAmB2H18LKFXV9lChoBmgJaA9DCN2adFsiv2NAlIaUUpRoFU3oA2gWR0CYIGN3np0PdX2UKGgGaAloD0MInYU97fBuWkCUhpRSlGgVTegDaBZHQJgk3ck+otN1fZQoaAZoCWgPQwiIn/8evDVkQJSGlFKUaBVN6ANoFkdAmCWfxMFlkHV9lChoBmgJaA9DCAgAjj17LVxAlIaUUpRoFU3oA2gWR0CYLqW9US7HdX2UKGgGaAloD0MIF7fRAN5eY0CUhpRSlGgVTegDaBZHQJhMdghKUV11fZQoaAZoCWgPQwhMUMO3sJpjQJSGlFKUaBVN6ANoFkdAmFUGYKIBR3V9lChoBmgJaA9DCDWXGwx1BltAlIaUUpRoFU3oA2gWR0CYXPGbkOqedX2UKGgGaAloD0MIchWL35RhYkCUhpRSlGgVTegDaBZHQJhqMzch1T11fZQoaAZoCWgPQwj9FMeBV6RlQJSGlFKUaBVN6ANoFkdAmGtLMHKOk3V9lChoBmgJaA9DCLK5ap6jfWJAlIaUUpRoFU3oA2gWR0CYa05vtMPCdX2UKGgGaAloD0MIyXGndLCtZkCUhpRSlGgVTegDaBZHQJhswVoHs1N1fZQoaAZoCWgPQwjqWnufKoFgQJSGlFKUaBVN6ANoFkdAmG2STUy57XV9lChoBmgJaA9DCOWXwRiRRWRAlIaUUpRoFU3oA2gWR0CYbd3zMA3ldX2UKGgGaAloD0MILZYi+cp5YkCUhpRSlGgVTegDaBZHQJhw1xyXD3x1fZQoaAZoCWgPQwg7wmnBC1VkQJSGlFKUaBVN6ANoFkdAmHaDtw71ZnV9lChoBmgJaA9DCNZyZyaYz2JAlIaUUpRoFU3oA2gWR0CYd8yHVPN3dX2UKGgGaAloD0MIZvUOt8NzYUCUhpRSlGgVTegDaBZHQJh8my6cy311fZQoaAZoCWgPQwhvg9pvbUdlQJSGlFKUaBVN6ANoFkdAmIMxClabF3V9lChoBmgJaA9DCLPNjemJDmNAlIaUUpRoFU3oA2gWR0CYhEwW3z+WdX2UKGgGaAloD0MIIVuWr8uLW0CUhpRSlGgVTegDaBZHQJiNKq94/u91fZQoaAZoCWgPQwh1H4DUJl9lQJSGlFKUaBVN6ANoFkdAmJQLAxi5NHV9lChoBmgJaA9DCDeKrDWUGGRAlIaUUpRoFU3oA2gWR0CYsiIAwPAgdX2UKGgGaAloD0MImj474DoYZ0CUhpRSlGgVTegDaBZHQJi+GyprDZV1fZQoaAZoCWgPQwiTGtoA7MxvQJSGlFKUaBVNqwJoFkdAmMHs6zVtoHV9lChoBmgJaA9DCKQYINGER2NAlIaUUpRoFU3oA2gWR0CYy/bvgFX8dX2UKGgGaAloD0MI+dozS4LnYUCUhpRSlGgVTegDaBZHQJjM5cnmaH91fZQoaAZoCWgPQwh4nKIjOV5gQJSGlFKUaBVN6ANoFkdAmMzoZ/CqInV9lChoBmgJaA9DCHMs76oH7F5AlIaUUpRoFU3oA2gWR0CYzkEU0vXcdX2UKGgGaAloD0MIQDIdOj2SYkCUhpRSlGgVTegDaBZHQJjPCaScLBt1fZQoaAZoCWgPQwjG/NzQlC9nQJSGlFKUaBVN6ANoFkdAmM9lvybx3HV9lChoBmgJaA9DCIdtizIbTWBAlIaUUpRoFU3oA2gWR0CY0gHH3lCDdX2UKGgGaAloD0MIyJkmbD8YYECUhpRSlGgVTegDaBZHQJjWeEug6EJ1fZQoaAZoCWgPQwhI4uXpXHRnQJSGlFKUaBVN6ANoFkdAmNleUQkHEHV9lChoBmgJaA9DCDPDRlk/m2FAlIaUUpRoFU3oA2gWR0CY3arQw9JSdX2UKGgGaAloD0MI2LrUCH3PYUCUhpRSlGgVTegDaBZHQJjecM4LkS51fZQoaAZoCWgPQwiBzqRNVVVoQJSGlFKUaBVN6ANoFkdAmOcmtZFG5XV9lChoBmgJaA9DCMTuO4bHbk1AlIaUUpRoFUvlaBZHQJjt4lt0mt11fZQoaAZoCWgPQwh5ru/DQRNnQJSGlFKUaBVN6ANoFkdAmO/DYukDZHV9lChoBmgJaA9DCHbCS3Bqv2NAlIaUUpRoFU3oA2gWR0CZDz6eGwiadX2UKGgGaAloD0MI1GNbBpyzYECUhpRSlGgVTegDaBZHQJkW8fzSThZ1fZQoaAZoCWgPQwiP5PIf0qFbQJSGlFKUaBVN6ANoFkdAmRnHI2fkFXV9lChoBmgJaA9DCBO54Az+tGJAlIaUUpRoFU3oA2gWR0CZIwzJIUaidX2UKGgGaAloD0MIo1uv6UFDZkCUhpRSlGgVTegDaBZHQJkj6ULUkOZ1fZQoaAZoCWgPQwgDtRg8TLNgQJSGlFKUaBVN6ANoFkdAmSPrWy1NQHV9lChoBmgJaA9DCH46HjPQmGRAlIaUUpRoFU3oA2gWR0CZJbYA80UHdX2UKGgGaAloD0MIjNgngOLtZUCUhpRSlGgVTegDaBZHQJkmyt8uzyB1fZQoaAZoCWgPQwjBU8iV+rZkQJSGlFKUaBVN6ANoFkdAmSc3/giu+3V9lChoBmgJaA9DCIi85erHTGdAlIaUUpRoFU3oA2gWR0CZKr0IkZ75dX2UKGgGaAloD0MIVYhH4uV8W0CUhpRSlGgVTegDaBZHQJkxhgjQiRp1fZQoaAZoCWgPQwh64c6FkdxbQJSGlFKUaBVN6ANoFkdAmTZIBNmDlHV9lChoBmgJaA9DCDOJesEnsWJAlIaUUpRoFU3oA2gWR0CZPE7KaG5+dX2UKGgGaAloD0MI1qvI6ADqZECUhpRSlGgVTegDaBZHQJlGCgCfYjB1fZQoaAZoCWgPQwjk9zb9WRZmQJSGlFKUaBVN6ANoFkdAmUvxzmwJPnV9lChoBmgJaA9DCONRKuEJUWZAlIaUUpRoFU3oA2gWR0CZTVLV4HHFdX2UKGgGaAloD0MIM+AsJcthYkCUhpRSlGgVTegDaBZHQJlsod7v5QB1fZQoaAZoCWgPQwhFgNO7eG1iQJSGlFKUaBVN6ANoFkdAmXcecc2itnV9lChoBmgJaA9DCNCYSdQL8VpAlIaUUpRoFU3oA2gWR0CZelDAaef7dX2UKGgGaAloD0MIiIGufYE6YkCUhpRSlGgVTegDaBZHQJmGYJgLJCB1fZQoaAZoCWgPQwhk5ZfBGBlkQJSGlFKUaBVN6ANoFkdAmYfHo5ggHXV9lChoBmgJaA9DCBhgH526A2RAlIaUUpRoFU3oA2gWR0CZh86GgzxgdX2UKGgGaAloD0MIzEbn/BTbZUCUhpRSlGgVTegDaBZHQJmJzwsoUi91fZQoaAZoCWgPQwgonN1apkJgQJSGlFKUaBVN6ANoFkdAmYsPIwM6R3V9lChoBmgJaA9DCOpZEMr7DGBAlIaUUpRoFU3oA2gWR0CZi4HYYixFdX2UKGgGaAloD0MItaM4R50MZECUhpRSlGgVTegDaBZHQJmPYGTs6aN1fZQoaAZoCWgPQwjoM6DejG9kQJSGlFKUaBVN6ANoFkdAmZVsjeKsMnV9lChoBmgJaA9DCMMMjScCEWdAlIaUUpRoFU3oA2gWR0CZmJ1UVBUrdX2UKGgGaAloD0MIiSZQxKKxYUCUhpRSlGgVTegDaBZHQJmeffP5YYB1fZQoaAZoCWgPQwhWZd8VQRxiQJSGlFKUaBVN6ANoFkdAmaurB0p3HXV9lChoBmgJaA9DCPktOlnqgmFAlIaUUpRoFU3oA2gWR0CZsmvQnhKldX2UKGgGaAloD0MI/YLdsG1cYkCUhpRSlGgVTegDaBZHQJmzvQ6ZH/d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (248 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 245.46306890809942, "std_reward": 18.07173811802339, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-06T08:33:36.197710"}
|